Maximum likelihood estimation of a binomial proportion using one‐sample misclassified binary data
In this article, we construct two likelihood‐based confidence intervals (CIs) for a binomial proportion parameter using a double‐sampling scheme with misclassified binary data. We utilize an easy‐to‐implement closed‐form algorithm to obtain maximum likelihood estimators of the model parameters by maximizing the full‐likelihood function. The two CIs are a naïve Wald interval and a modified Wald interval. Using simulations, we assess and compare the coverage probabilities and average widths of our two CIs. Finally, we conclude that the modified Wald interval, unlike the naïve Wald interval, prod... Mehr ...
Verfasser: | |
---|---|
Dokumenttyp: | Artikel |
Reihe/Periodikum: | Statistica Neerlandica |
Verlag/Hrsg.: |
Oxford,
Blackwell
|
Sprache: | Englisch |
ISSN: | 0039-0402 |
Weitere Identifikatoren: | doi: 10.1111/stan.12058 |
Permalink: | https://search.fid-benelux.de/Record/olc-benelux-1964987334 |
URL: | NULL NULL |
Datenquelle: | Online Contents Benelux; Originalkatalog |
Powered By: | Verbundzentrale des GBV (VZG) |
Link(s) : | http://dx.doi.org/10.1111/stan.12058
http://dx.doi.org/10.1111/stan.12058 |
In this article, we construct two likelihood‐based confidence intervals (CIs) for a binomial proportion parameter using a double‐sampling scheme with misclassified binary data. We utilize an easy‐to‐implement closed‐form algorithm to obtain maximum likelihood estimators of the model parameters by maximizing the full‐likelihood function. The two CIs are a naïve Wald interval and a modified Wald interval. Using simulations, we assess and compare the coverage probabilities and average widths of our two CIs. Finally, we conclude that the modified Wald interval, unlike the naïve Wald interval, produces close‐to‐nominal CIs under various simulations and, thus, is preferred in practice. Utilizing the expressions derived, we also illustrate our two CIs for a binomial proportion parameter using real‐data example.