Genetic Similarity Assessment of Twin-Family Populations by Custom-Designed Genotyping Array
Twin registries often take part in large collaborative projects and are major contributors to genome-wide association (GWA) meta-analysis studies. In this article, we describe genotyping of twin-family populations from Australia, the Midwestern USA (Avera Twin Register), the Netherlands (Netherlands Twin Register), as well as a sample of mothers of twins from Nigeria to assess the extent, if any, of genetic differences between them. Genotyping in all cohorts was done using a custom-designed Illumina Global Screening Array (GSA), optimized to improve imputation quality for population-specific G... Mehr ...
Twin registries often take part in large collaborative projects and are major contributors to genome-wide association (GWA) meta-analysis studies. In this article, we describe genotyping of twin-family populations from Australia, the Midwestern USA (Avera Twin Register), the Netherlands (Netherlands Twin Register), as well as a sample of mothers of twins from Nigeria to assess the extent, if any, of genetic differences between them. Genotyping in all cohorts was done using a custom-designed Illumina Global Screening Array (GSA), optimized to improve imputation quality for population-specific GWA studies. We investigated the degree of genetic similarity between the populations using several measures of population variation with genotype data generated from the GSA. Visualization of principal component analysis (PCA) revealed that the Australian, Dutch and Midwestern American populations exhibit negligible interpopulation stratification when compared to each other, to a reference European population and to globally distant populations. Estimations of fixation indices (FST values) between the Australian, Midwestern American and Netherlands populations suggest minimal genetic differentiation compared to the estimates between each population and a genetically distinct cohort (i.e., samples from Nigeria genotyped on GSA). Thus, results from this study demonstrate that genotype data from the Australian, Dutch and Midwestern American twin-family populations can be reasonably combined for joint-genetic analysis.