Responsiveness of residential electricity demand to dynamic tariffs:experiences from a large field test in the Netherlands

To efficiently facilitate the energy transition it is essential to evaluate the potential of demand response in practice. Based on the results of a Dutch smart grid pilot, this paper assesses the potential of both manual and semi-automated demand response in residential areas. To stimulate demand response, a dynamic tariff and smart appliances were used. The participating households were informed about the tariff day-ahead through a home energy management system, connected to a display installed on the wall in their living room. The tariff was intuitively displayed: self-consumption of photovo... Mehr ...

Verfasser: Klaassen, EAM Elke
Kobus, CBA
Frunt, J Jasper
Slootweg, JG Han
Dokumenttyp: article / Letter to the editor
Erscheinungsdatum: 2016
Verlag/Hrsg.: Elsevier
Sprache: Englisch
Permalink: https://search.fid-benelux.de/Record/base-29613590
Datenquelle: BASE; Originalkatalog
Powered By: BASE
Link(s) : http://repository.tue.nl/885773

To efficiently facilitate the energy transition it is essential to evaluate the potential of demand response in practice. Based on the results of a Dutch smart grid pilot, this paper assesses the potential of both manual and semi-automated demand response in residential areas. To stimulate demand response, a dynamic tariff and smart appliances were used. The participating households were informed about the tariff day-ahead through a home energy management system, connected to a display installed on the wall in their living room. The tariff was intuitively displayed: self-consumption of photovoltaic generation was stimulated by means of a low tariff, but also the generation itself played a central role on the display. Household flexibility is analyzed, focusing on: (i) the load shift of (smart) appliances, and (ii) the response of the (overall) peak load towards the dynamic tariff. To assess the latter, i.e. price responsiveness, the participants were split up in two comparable groups which were subject to a different moment of evening peak-pricing. Based on the results, it is concluded that mainly the flexibility of the white goods (i.e. the washing machine, tumble dryer and dishwasher) is used for demand response. The main part of the flexible load of these (smart) appliances is shifted from the evening to the midday, to match local generation. This load shift remained stable over a long period of time (>1 year) and is not responsive to the exact moment of peak-pricing. Therefore, it is concluded that a simple and transparent design for dynamic tariffs is sufficient and most effective to stimulate (manual) residential demand response. Such a tariff should emphasize the ‘right’ moments to use electricity, intuitively linked to renewable generation.