Prioritizing emerging zoonoses in the Netherlands.
BACKGROUND: To support the development of early warning and surveillance systems of emerging zoonoses, we present a general method to prioritize pathogens using a quantitative, stochastic multi-criteria model, parameterized for the Netherlands. METHODOLOGY/PRINCIPAL FINDINGS: A risk score was based on seven criteria, reflecting assessments of the epidemiology and impact of these pathogens on society. Criteria were weighed, based on the preferences of a panel of judges with a background in infectious disease control. CONCLUSIONS/SIGNIFICANCE: Pathogens with the highest risk for the Netherlands... Mehr ...
Verfasser: | |
---|---|
Dokumenttyp: | Artikel |
Erscheinungsdatum: | 2010 |
Reihe/Periodikum: | PLoS ONE, Vol 5, Iss 11, p e13965 (2010) |
Verlag/Hrsg.: |
Public Library of Science (PLoS)
|
Schlagwörter: | Medicine / R / Science / Q |
Sprache: | Englisch |
Permalink: | https://search.fid-benelux.de/Record/base-29585799 |
Datenquelle: | BASE; Originalkatalog |
Powered By: | BASE |
Link(s) : | https://doi.org/10.1371/journal.pone.0013965 |
BACKGROUND: To support the development of early warning and surveillance systems of emerging zoonoses, we present a general method to prioritize pathogens using a quantitative, stochastic multi-criteria model, parameterized for the Netherlands. METHODOLOGY/PRINCIPAL FINDINGS: A risk score was based on seven criteria, reflecting assessments of the epidemiology and impact of these pathogens on society. Criteria were weighed, based on the preferences of a panel of judges with a background in infectious disease control. CONCLUSIONS/SIGNIFICANCE: Pathogens with the highest risk for the Netherlands included pathogens in the livestock reservoir with a high actual human disease burden (e.g. Campylobacter spp., Toxoplasma gondii, Coxiella burnetii) or a low current but higher historic burden (e.g. Mycobacterium bovis), rare zoonotic pathogens in domestic animals with severe disease manifestations in humans (e.g. BSE prion, Capnocytophaga canimorsus) as well as arthropod-borne and wildlife associated pathogens which may pose a severe risk in future (e.g. Japanese encephalitis virus and West-Nile virus). These agents are key targets for development of early warning and surveillance.