A Mutation in the Mitochondrial Aspartate/Glutamate Carrier Leads to Intramitochondrial Oxidation and an Inflammatory Myopathy in Dutch Shepherd Dogs
BACKGROUND: Inflammatory myopathies are characterized by infiltration of inflammatory cells into muscle. Typically, immune-mediated disorders such as polymyositis, dermatomyositis and inclusion body myositis are diagnosed. OBJECTIVE: A small family of dogs with early onset muscle weakness and inflammatory muscle biopsies were investigated for an underlying genetic cause. METHODS: Following the histopathological diagnosis of inflammatory myopathy, mutational analysis including whole genome sequencing, functional transport studies of the mutated and wild-type proteins, and metabolomic analysis w... Mehr ...
Verfasser: | |
---|---|
Dokumenttyp: | Artikel |
Erscheinungsdatum: | 2019 |
Schlagwörter: | Canine / myopathy / SLC25A12 / mitochondrial transporter / metabolomics |
Sprache: | Englisch |
Permalink: | https://search.fid-benelux.de/Record/base-29455307 |
Datenquelle: | BASE; Originalkatalog |
Powered By: | BASE |
Link(s) : | https://dspace.library.uu.nl/handle/1874/386570 |
BACKGROUND: Inflammatory myopathies are characterized by infiltration of inflammatory cells into muscle. Typically, immune-mediated disorders such as polymyositis, dermatomyositis and inclusion body myositis are diagnosed. OBJECTIVE: A small family of dogs with early onset muscle weakness and inflammatory muscle biopsies were investigated for an underlying genetic cause. METHODS: Following the histopathological diagnosis of inflammatory myopathy, mutational analysis including whole genome sequencing, functional transport studies of the mutated and wild-type proteins, and metabolomic analysis were performed. RESULTS: Whole genome resequencing identified a pathological variant in the SLC25A12 gene, resulting in a leucine to proline substitution at amino acid 349 in the mitochondrial aspartate-glutamate transporter known as the neuron and muscle specific aspartate glutamate carrier 1 (AGC1). Functionally reconstituting recombinant wild-type and mutant AGC1 into liposomes demonstrated a dramatic decrease in AGC1 transport activity and inability to transfer reducing equivalents from the cytosol into mitochondria. Targeted, broad-spectrum metabolomic analysis from affected and control muscles demonstrated a proinflammatory milieu and strong support for oxidative stress. CONCLUSIONS: This study provides the first description of a metabolic mechanism in which ablated mitochondrial glutamate transport markedly reduced the import of reducing equivalents into mitochondria and produced a highly oxidizing and proinflammatory muscle environment and an inflammatory myopathy.