Trends in genome-wide and region-specific genetic diversity in the Dutch-Flemish Holstein–Friesian breeding program from 1986 to 2015 ...
Abstract Background In recent decades, Holstein–Friesian (HF) selection schemes have undergone profound changes, including the introduction of optimal contribution selection (OCS; around 2000), a major shift in breeding goal composition (around 2000) and the implementation of genomic selection (GS; around 2010). These changes are expected to have influenced genetic diversity trends. Our aim was to evaluate genome-wide and region-specific diversity in HF artificial insemination (AI) bulls in the Dutch-Flemish breeding program from 1986 to 2015. Methods Pedigree and genotype data (~ 75.5 k) of 6... Mehr ...
Verfasser: | |
---|---|
Dokumenttyp: | Datenquelle |
Erscheinungsdatum: | 2018 |
Verlag/Hrsg.: |
figshare
|
Schlagwörter: | Genetics / FOS: Biological sciences / Evolutionary Biology / Ecology / Biological Sciences not elsewhere classified / Plant Biology / Computational Biology |
Sprache: | unknown |
Permalink: | https://search.fid-benelux.de/Record/base-29399567 |
Datenquelle: | BASE; Originalkatalog |
Powered By: | BASE |
Link(s) : | https://dx.doi.org/10.6084/m9.figshare.c.4067060 |
Abstract Background In recent decades, Holstein–Friesian (HF) selection schemes have undergone profound changes, including the introduction of optimal contribution selection (OCS; around 2000), a major shift in breeding goal composition (around 2000) and the implementation of genomic selection (GS; around 2010). These changes are expected to have influenced genetic diversity trends. Our aim was to evaluate genome-wide and region-specific diversity in HF artificial insemination (AI) bulls in the Dutch-Flemish breeding program from 1986 to 2015. Methods Pedigree and genotype data (~ 75.5 k) of 6280 AI-bulls were used to estimate rates of genome-wide inbreeding and kinship and corresponding effective population sizes. Region-specific inbreeding trends were evaluated using regions of homozygosity (ROH). Changes in observed allele frequencies were compared to those expected under pure drift to identify putative regions under selection. We also investigated the direction of changes in allele frequency over time. ...