A Study of Ground Movements in Brussels (Belgium) Monitored by Persistent Scatterer Interferometry over a 25-Year Period

The time series of Synthetic Aperture Radar data acquired by four satellite missions (including ERS, Envisat, TerraSAR-X and Sentinel 1) were processed using Persistent Scatterer interferometric synthetic aperture radar (InSAR) techniques. The processed datasets provide a nearly continuous coverage from 1992 to 2017 over the Brussels Region (Belgium) and give evidence of ongoing, slow ground deformations. The results highlight an area of uplift located in the heart of the city, with a cumulative ground displacement of ±4 cm over a 25-year period. The rates of uplift appear to have decreased fr... Mehr ...

Verfasser: Pierre-Yves Declercq
Jan Walstra
Pierre Gérard
Eric Pirard
Daniele Perissin
Bruno Meyvis
Xavier Devleeschouwer
Dokumenttyp: Artikel
Erscheinungsdatum: 2017
Reihe/Periodikum: Geosciences, Vol 7, Iss 4, p 115 (2017)
Verlag/Hrsg.: MDPI AG
Schlagwörter: Persistent Scatterer Interferometry / Radar Interferometry / InSAR / uplift / subsidence / groundwater recharge / Brussels / Geology / QE1-996.5
Sprache: Englisch
Permalink: https://search.fid-benelux.de/Record/base-29387700
Datenquelle: BASE; Originalkatalog
Powered By: BASE
Link(s) : https://doi.org/10.3390/geosciences7040115

The time series of Synthetic Aperture Radar data acquired by four satellite missions (including ERS, Envisat, TerraSAR-X and Sentinel 1) were processed using Persistent Scatterer interferometric synthetic aperture radar (InSAR) techniques. The processed datasets provide a nearly continuous coverage from 1992 to 2017 over the Brussels Region (Belgium) and give evidence of ongoing, slow ground deformations. The results highlight an area of uplift located in the heart of the city, with a cumulative ground displacement of ±4 cm over a 25-year period. The rates of uplift appear to have decreased from 2 to 4 mm/year during the ERS acquisition period (1992–2006) down to 0.5–1 mm/year for the Sentinel 1 data (2014–2017). Uplift of the city centre is attributed to a reduction of groundwater extraction from the deeper (Cenozoic-Paleozoic) aquifers, related to the deindustrialization of the city centre since the 1970s. The groundwater levels attested by piezometers in these aquifers show a clear recharge trend which induced the uplift. Some areas of subsidence in the river valleys such as the Maelbeek can be related to the natural settlement of soft, young alluvial deposits, possibly increased by the load of buildings.