A comparison of the CAR and DAGAR spatial random effects models with an application to diabetics rate estimation in Belgium

When hierarchically modelling an epidemiological phenomenon on a finite collection of sites in space, one must always take a latent spatial effect into account in order to capture the correlation structure that links the phenomenon to the territory. In this work, we compare two autoregressive spatial models that can be used for this purpose: the classical CAR model and the more recent DAGAR model. Differently from the former, the latter has a desirable property: its ρ parameter can be naturally interpreted as the average neighbor pair correlation and, in addition, this parameter can be directl... Mehr ...

Verfasser: Vittoria La Serra
Christel Faes
Niel Hens
Pierpaolo Brutti
Dokumenttyp: conferenceObject
Erscheinungsdatum: 2020
Verlag/Hrsg.: Pearson
Schlagwörter: spatial correlation / autoregressive model / CAR / DAGAR / epidemiology / diabetes
Sprache: Englisch
Permalink: https://search.fid-benelux.de/Record/base-29377310
Datenquelle: BASE; Originalkatalog
Powered By: BASE
Link(s) : https://hdl.handle.net/11573/1480718

When hierarchically modelling an epidemiological phenomenon on a finite collection of sites in space, one must always take a latent spatial effect into account in order to capture the correlation structure that links the phenomenon to the territory. In this work, we compare two autoregressive spatial models that can be used for this purpose: the classical CAR model and the more recent DAGAR model. Differently from the former, the latter has a desirable property: its ρ parameter can be naturally interpreted as the average neighbor pair correlation and, in addition, this parameter can be directly estimated when the effect is modelled using a DAGAR rather than a CAR structure. As an application, we model the diabetics rate in Belgium in 2014 and show the adequacy of these models in predicting the response variable when no covariates are available.