Climate change in Belgium: recent and future evolution of global radiation and hydroclimatic conditions favouring floods using the regional climate model MAR
In Belgium, the future response of the climate to increasing greenhouse gas concentration is not clear, especially with regard to the perturbations of the precipitation regime, snow cover, and global radiation. On the one hand, existing studies show results which differ strongly either according to the future scenario, or from one model to another. On the other hand, there is even an absence of studies focussing on Belgium regarding future changes in snow cover and global radiation. Given their potential impacts on the society (water management, energy supply, biodiversity, tourism), future ch... Mehr ...
Verfasser: | |
---|---|
Dokumenttyp: | doctoral thesis |
Erscheinungsdatum: | 2018 |
Verlag/Hrsg.: |
ULiège - Université de Liège
|
Schlagwörter: | Belgium / Climate change / Regional climate modelling / Belgique / Changements climatiques / modélisation régionale du climat / Physical / chemical / mathematical & earth Sciences / Earth sciences & physical geography / Physique / chimie / mathématiques & sciences de la terre / Sciences de la terre & géographie physique |
Sprache: | Englisch |
Permalink: | https://search.fid-benelux.de/Record/base-29320962 |
Datenquelle: | BASE; Originalkatalog |
Powered By: | BASE |
Link(s) : | https://orbi.uliege.be/handle/2268/229180 |
In Belgium, the future response of the climate to increasing greenhouse gas concentration is not clear, especially with regard to the perturbations of the precipitation regime, snow cover, and global radiation. On the one hand, existing studies show results which differ strongly either according to the future scenario, or from one model to another. On the other hand, there is even an absence of studies focussing on Belgium regarding future changes in snow cover and global radiation. Given their potential impacts on the society (water management, energy supply, biodiversity, tourism), future changes in precipitation, snow cover, and global radiation require further research. As the orography, the exposition to the dominant winds, and the proximity of the North Sea determine a large spatial variability in the Belgian climate, the latter requires a fine representation of these features to be properly simulated. Compared to global climate models (GCM), regional climate models (RCM) are recognized for their ability to represent climatic phenomena with higher spatial resolutions. In the framework of this doctoral thesis, the RCM MAR (for "Modèle Atmosphérique Régional" in French), which is developed at the Laboratory of Climatology and Topoclimatology of the University of Liège, was applied for the first time to Belgium. The aim was first to assess the performances of MAR over Belgium and then to study the current and future evolution of hydroclimatic conditions favouring floods, and also the current and future evolution of global radiation. For this purpose, historical simulations were performed over 1959-2014. Future projections (2006-2100) were then performed under the most pessimist IPCC future scenario (RCP8.5). The horizontal resolution used for both historical and future simulations is 5 km. By comparing the MAR outputs to ground-based measurements from 20 weather stations over 2008-2014, the results show that MAR successfully simulates the spatial and temporal variability of the Belgian climate. In fact, the ...