Comparing support vector machines with logistic regression for calibrating cellular automata land use change models

Land use change models enable the exploration of the drivers and consequences of land use dynamics. A broad array of modeling approaches are available and each type has certain advantages and disadvantages depending on the objective of the research. This paper presents an approach combining cellular automata (CA) model and support vector machines (SVMs) for modeling urban land use change in Wallonia (Belgium) between 2000 and 2010. The main objective of this study is to compare the accuracy of allocating new land use transitions based on CA-SVMs approach with conventional coupled logistic regr... Mehr ...

Verfasser: Ahmed Mustafa
Andreas Rienow
Ismaïl Saadi
Mario Cools
Jacques Teller
Dokumenttyp: Artikel
Erscheinungsdatum: 2018
Reihe/Periodikum: European Journal of Remote Sensing, Vol 51, Iss 1, Pp 391-401 (2018)
Verlag/Hrsg.: Taylor & Francis Group
Schlagwörter: Land use change / urban expansion / cellular automata / supported vector machines / logistic regression / Wallonia / Oceanography / GC1-1581 / Geology / QE1-996.5
Sprache: Englisch
Permalink: https://search.fid-benelux.de/Record/base-29281064
Datenquelle: BASE; Originalkatalog
Powered By: BASE
Link(s) : https://doi.org/10.1080/22797254.2018.1442179