ENGINEERING GEOLOGICAL ASSESSMENT (EGA) ON SLOPES ALONG THE PENAMPANG TO TAMBUNAN ROAD, SABAH, MALAYSIA

This study focused on the engineering geological investigation of slope failures along Penampang to Tambunan road, approximately 12th km to 101th km from Kota Kinabalu city, Sabah, Malaysia. The area is underlain by the Crocker Formation (Late Eocene to Early Miocene age) and the Quaternary Deposits (Recent age). These rock units show numerous lineaments with complex structural styles developed during several regional Tertiary tectonic activities. The tectonic complexities influenced the physical and mechanical properties of the rocks, resulting in a high degree of weathering and instability.... Mehr ...

Verfasser: Rodeano Roslee
Felix Tongkul
Dokumenttyp: Artikel
Erscheinungsdatum: 2018
Reihe/Periodikum: Malaysian Journal of Geosciences, Vol 2, Iss 1, Pp 09-17 (2018)
Verlag/Hrsg.: Zibeline International
Schlagwörter: Engineering Geology / Kinematics Analysis / Slope Stability Analysis / Sabah & Malaysia / Geology / QE1-996.5
Sprache: Englisch
Permalink: https://search.fid-benelux.de/Record/base-29234518
Datenquelle: BASE; Originalkatalog
Powered By: BASE
Link(s) : https://doi.org/10.26480/mjg.01.2018.09.17

This study focused on the engineering geological investigation of slope failures along Penampang to Tambunan road, approximately 12th km to 101th km from Kota Kinabalu city, Sabah, Malaysia. The area is underlain by the Crocker Formation (Late Eocene to Early Miocene age) and the Quaternary Deposits (Recent age). These rock units show numerous lineaments with complex structural styles developed during several regional Tertiary tectonic activities. The tectonic complexities influenced the physical and mechanical properties of the rocks, resulting in a high degree of weathering and instability. The weathered materials are unstable and may experience sliding due to by high pore pressure and intensively geomorphological processes. In this study, a total of 31 selected critical slope failures were studied and classified into two main groups: rock slope and soil slope. Failures in soil slopes (including embankments) are 21 (67 %) whereas 10 of all failures (33 %) of rock slope. Soil slope failures normally involved large volumes of failed material as compared much rock slopes, where the failures are mostly small. Of the 21 failures in soil slopes, 15 (71 %) are embankment failures making them 48 % of all types of failures. Physical and mechanical properties of 84 soil samples indicated that the failure materials mainly consist of poorly graded to well graded materials of clayey loamy soils, which characterized by low to intermediate plasticity content (9 % to 28 %), containing of inactive to normal clay (0.34 to 1.45), very high to medium degree of swelling (5.63 to 13.85), variable low to high water content (4 % to 22 %), specific gravity ranges from 2.57 to 2.80, low permeability (9.66 X 10-3 to 4.33 X 10-3 cm/s), friction angle () ranges from 7.70˚ to 29.20˚ and cohesion (C) ranges from 3.20 KPa to 17.27 KPa. The rock properties of 10 rock samples indicated that the point load strength index and the uniaxial compressive strength range classified as moderately week. Kinematics slope analyses indicates that the ...