Bayesian Combinations of Stock Price Predictions with an Application to the Amsterdam Exchange Index

We summarize the general combination approach by Billio et al. [2010]. In the combination model the weights follow logistic autoregressive processes, change over time and their dynamics are possible driven by the past forecasting performances of the predictive densities. For illustrative purposes we apply it to combine White Noise and GARCH models to forecast the Amsterdam Exchange index and use the combined predictive forecasts in an investment asset allocation exercise.

Verfasser: Billio, Monica
Casarin, Roberto
Ravazzolo, Francesco
van Dijk, Herman K.
Dokumenttyp: doc-type:workingPaper
Erscheinungsdatum: 2011
Verlag/Hrsg.: Amsterdam and Rotterdam: Tinbergen Institute
Schlagwörter: ddc:330 / C11 / C15 / C53 / E37 / Density Forecast Combination / Stock data / Börsenkurs / Prognoseverfahren / Bayes-Statistik / ARCH-Modell / Niederlande
Sprache: Englisch
Permalink: https://search.fid-benelux.de/Record/base-29231920
Datenquelle: BASE; Originalkatalog
Powered By: BASE
Link(s) : http://hdl.handle.net/10419/87064