A linear mixed-model approach to study multivariate gene-environment interactions

Different exposures, including diet, physical activity, or external conditions can contribute to genotype-environment interactions (G×E). Although high-dimensional environmental data are increasingly available and multiple exposures have been implicated with G×E at the same loci, multi-environment tests for G×E are not established. Here, we propose the structured linear mixed model (StructLMM), a computationally efficient method to identify and characterize loci that interact with one or more environments. After validating our model using simulations, we applied StructLMM to body mass index in... Mehr ...

Verfasser: 't Hoen, P.A.
van Meurs, Joyce B J
Isaacs, Aaron
Jansen, Rick
Franke, Lude
Boomsma, D.I.
Pool, R.
van Dongen, J.
Hottenga, J.J.
Van Greevenbroek, Marleen J.
Stehouwer, Coen D A
van der Kallen, Carla J H
Schalkwijk, Casper G
Wijmenga, Cisca
Zhernakova, Alexandra
Tigchelaar, Ettje F
Slagboom, P. Eline
Beekman, Marian
Deelen, Joris
van Heemst, Diana
Veldink, Jan H
van den Berg, Leonard H
van Duijn, Cornelia M
Hofman, Bert A.
Uitterlinden, Andre G
Jhamai, P Mila
Verbiest, Michael
Suchiman, H. Eka D.
Verkerk, Marijn
van der Breggen, Ruud
van Rooij, Jeroen
Lakenberg, Nico
Mei, Hailiang
van Iterson, Maarten
van Galen, Michiel
Bot, Jan
van’t Hof, Peter
Deelen, Patrick
Nooren, Irene
Moed, Matthijs
Vermaat, Martijn
Zhernakova, Dasha V.
Luijk, René
Jan Bonder, Marc
van Dijk, Freerk
Arindrarto, Wibowo
Kielbasa, P. Szymon M.
Swertz, Morris a.
van Zwet, Erik W
Dokumenttyp: Artikel
Erscheinungsdatum: 2019
Reihe/Periodikum: 't Hoen , P A , van Meurs , J B J , Isaacs , A , Jansen , R , Franke , L , Boomsma , D I , Pool , R , van Dongen , J , Hottenga , J J , Van Greevenbroek , M J , Stehouwer , C D A , van der Kallen , C J H , Schalkwijk , C G , Wijmenga , C , Zhernakova , A , Tigchelaar , E F , Slagboom , P E , Beekman , M , Deelen , J , van Heemst , D , Veldink , J H , van den Berg , L H , van Duijn , C M , Hofman , B A , Uitterlinden , A G , Jhamai , P M , Verbiest , M , Suchiman , H E D , Verkerk , M , van der Breggen , R , van Rooij , J , Lakenberg , N , Mei , H , van Iterson , M , van Galen , M , Bot , J , van’t Hof , P , Deelen , P , Nooren , I , Moed , M , Vermaat , M , Zhernakova , D V , Luijk , R , Jan Bonder , M , van Dijk , F , Arindrarto , W , Kielbasa , P S M , Swertz , M A , van Zwet , E W & BIOS Consortium 2019 , ' A linear mixed-model approach to study multivariate gene-environment interactions ' , Nature Genetics , vol. 51 , no. 1 , pp. 180-186 . https://doi.org/10.1038/s41588-018-0271-0
Schlagwörter: /dk/atira/pure/keywords/cohort_studies/netherlands_twin_register_ntr_ / name=Netherlands Twin Register (NTR)
Sprache: Englisch
Permalink: https://search.fid-benelux.de/Record/base-29213904
Datenquelle: BASE; Originalkatalog
Powered By: BASE
Link(s) : https://research.vu.nl/en/publications/62814082-5ee0-407c-be51-6c86133903fa

Different exposures, including diet, physical activity, or external conditions can contribute to genotype-environment interactions (G×E). Although high-dimensional environmental data are increasingly available and multiple exposures have been implicated with G×E at the same loci, multi-environment tests for G×E are not established. Here, we propose the structured linear mixed model (StructLMM), a computationally efficient method to identify and characterize loci that interact with one or more environments. After validating our model using simulations, we applied StructLMM to body mass index in the UK Biobank, where our model yields previously known and novel G×E signals. Finally, in an application to a large blood eQTL dataset, we demonstrate that StructLMM can be used to study interactions with hundreds of environmental variables.