Seasonal Streamflow Forecasting for Fresh Water Reservoir Management in the Netherlands:An Assessment of Multiple Prediction Systems

For efficient management of the Dutch surface water reservoir Lake IJssel, (sub)seasonal forecasts of the water volumes going in and out of the reservoir are potentially of great interest. Here, streamflow forecasts were analyzed for the river Rhine at Lobith, which is partly routed through the river IJssel, the main influx into the reservoir. We analyzed seasonal forecast datasets derived from the European Flood Awareness System (EFAS), the Swedish Meteorological and Hydrological Institute (SMHI) European Hydrological Predictions for the Environment (E-HYPE), and Hydrology Tiled ECMWF Scheme... Mehr ...

Verfasser: Hurkmans, Ruud T.W.L.
Van Den Hurk, BART
Schmeits, Maurice
Wetterhall, Fredrik
Pechlivanidis, Ilias G.
Dokumenttyp: Artikel
Erscheinungsdatum: 2023
Reihe/Periodikum: Hurkmans , R T W L , Van Den Hurk , BART , Schmeits , M , Wetterhall , F & Pechlivanidis , I G 2023 , ' Seasonal Streamflow Forecasting for Fresh Water Reservoir Management in the Netherlands : An Assessment of Multiple Prediction Systems ' , Journal of Hydrometeorology , vol. 24 , no. 7 , pp. 1275-1290 . https://doi.org/10.1175/JHM-D-22-0107.1
Schlagwörter: Europe / Hydrology / Rivers / Seasonal forecasting / Statistical techniques
Sprache: Englisch
Permalink: https://search.fid-benelux.de/Record/base-29212584
Datenquelle: BASE; Originalkatalog
Powered By: BASE
Link(s) : https://research.vu.nl/en/publications/c20f8ec9-c626-4df4-8ff1-be39eb4c65e8

For efficient management of the Dutch surface water reservoir Lake IJssel, (sub)seasonal forecasts of the water volumes going in and out of the reservoir are potentially of great interest. Here, streamflow forecasts were analyzed for the river Rhine at Lobith, which is partly routed through the river IJssel, the main influx into the reservoir. We analyzed seasonal forecast datasets derived from the European Flood Awareness System (EFAS), the Swedish Meteorological and Hydrological Institute (SMHI) European Hydrological Predictions for the Environment (E-HYPE), and Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL), which differ in their underlying hydrological formu-lation, but are all forced by meteorological forecasts from ECMWF’s fifth generation seasonal forecast system (SEAS5). We postprocessed the streamflow forecasts using quantile mapping (QM) and analyzed several forecast quality metrics. Forecast performance was assessed based on the available reforecast period, as well as on individual summer seasons. QM increased forecast skill for nearly all metrics evaluated. Averaged over the reforecast period, forecasts were skillful for up to 4 months in spring and early summer. Later in summer the skillful period deteriorated to 1–2 months. When investigat-ing specific years with either low-or high-flow conditions, forecast skill increased with the extremity of the event. Although raw forecasts for both E-HYPE and EFAS were more skillful than HTESSEL, bias correction based on QM can signifi-cantly reduce the difference. In operational mode, the three forecast systems show comparable skill. In general, dry conditions can be forecasted with high success rates up to 3 months ahead, which is very promising for successful use of Rhine streamflow forecasts in downstream reservoir management.