Environmental geochemistry of a mega beach nourishment in the Netherlands: Monitoring freshening and oxidation processes

Abstract As coastal lowlands are prone to sea water flooding, sea-level rise might globally increase this risk. To protect its coastline, the Netherlands adds an average of 12 million m3 of sand annually, but more is needed to cope with the expected consequences of global warming. In 2011 a novel approach for coastal protection was applied near The Hague, consisting of a mega beach nourishment of 21.5 million m3 of sand: the Sand Engine – an artificial sand spit rising to 6 m above mean sea level. It uniquely combines coastal engineering construction with environmental, ecological and social c... Mehr ...

Verfasser: Pit, Iris R.
Griffioen, Jasper
Wassen, Martin J.
Dokumenttyp: Artikel
Erscheinungsdatum: 2017
Schlagwörter: Cluster analysis / Robust factor analysis / Pyrite oxidation / Coastal management / Sediment / Groundwater
Sprache: Englisch
Permalink: https://search.fid-benelux.de/Record/base-29201831
Datenquelle: BASE; Originalkatalog
Powered By: BASE
Link(s) : https://dspace.library.uu.nl/handle/1874/350685

Abstract As coastal lowlands are prone to sea water flooding, sea-level rise might globally increase this risk. To protect its coastline, the Netherlands adds an average of 12 million m3 of sand annually, but more is needed to cope with the expected consequences of global warming. In 2011 a novel approach for coastal protection was applied near The Hague, consisting of a mega beach nourishment of 21.5 million m3 of sand: the Sand Engine – an artificial sand spit rising to 6 m above mean sea level. It uniquely combines coastal engineering construction with environmental, ecological and social considerations. To construct the Sand Engine, material was used from the seafloor, which changed the materials environment from anaerobic to aerobic, triggering two main hydrogeochemical processes: pyrite oxidation and groundwater freshening. The objective of this study was to assess the sediment geochemistry of the Sand Engine and understand the hydrogeochemistry with respect to pyrite oxidation and freshening. When sufficient buffer capacity is lacking, the mobility of metals and metalloids originated from the mineral pyrite, can cause local impacts on ecology and environment. Geochemical and multivariate statistical analyses were performed on 174 sediment samples from the Sand Engine and from material collected from the seafloor prior to its construction, as well as on 86 samples of pore water collected from the Sand Engine. First, a cluster analysis was performed, using model-based (Mclust) and variable clustering. Second, a robust factor analyses (RFA) was used to explain the variation between the groups and discover relationships between elements and/or soil properties within the groups. We distinguished three clusters of sediment samples and two clusters of pore water samples. Sediment cluster 1 was comprised exclusively of surface samples from the Sand Engine; it was differentiated from the other two clusters by its geochemistry, sorting processes and weathering. Sediment clusters 2 consisted of shallow samples from ...