Singular anisotropic equations with a sign-changing perturbation
We consider an anisotropic Dirichlet problem driven by the variable (p, q)-Laplacian (double phase problem). In the reaction, we have the competing effects of a singular term and of a superlinear perturbation. Contrary to most of the previous papers, we assume that the perturbation changes sign. We prove a multiplicity result producing two positive smooth solutions when the coefficient function in the singular term is small in the L∞-norm.
Verfasser: | |
---|---|
Dokumenttyp: | Artikel |
Erscheinungsdatum: | 2023 |
Verlag/Hrsg.: |
Vilnius University Press
|
Schlagwörter: | variable exponents / modular function / Luxemburg norm / regularity theory / maximum principle |
Sprache: | Englisch |
Permalink: | https://search.fid-benelux.de/Record/base-29112907 |
Datenquelle: | BASE; Originalkatalog |
Powered By: | BASE |
Link(s) : | https://www.journals.vu.lt/nonlinear-analysis/article/view/33472 |