When and where the Orlicz and Luxemburg (quasi-) norms are equivalent?

We study the equivalence between the Orlicz and Luxemburg (quasi-) norms in the context of the generalized Orlicz spaces associated to an N-function Φ and a (quasi-) Banach function space X over a positive finite measure μ. We show that the Orlicz and the Luxemburg spaces do not coincide in general, and also that under mild requirements (σ-Fatou property, strictly monotone renorming) the coincidence holds. We use as a technical tool the classes LΦ w(m), LΦ(m) and LΦ( m ) of Orlicz spaces of scalar integrable functions with respect to a Banach space-valued countably additive vector measure m, p... Mehr ...

Verfasser: Campo Acosta, Ricardo del
Fernández Carrión, Antonio
Mayoral Masa, Fernando
Naranjo Naranjo, Francisco José
Sánchez Pérez, Enrique A.
Dokumenttyp: Artikel
Erscheinungsdatum: 2022
Verlag/Hrsg.: Elsevier
Schlagwörter: Banach function space / Vector measures / Orlicz spaces / Orlicz norm / Luxemburg norm / Strictly monotone norm
Sprache: Englisch
Permalink: https://search.fid-benelux.de/Record/base-29112765
Datenquelle: BASE; Originalkatalog
Powered By: BASE
Link(s) : https://idus.us.es/handle//11441/135915

We study the equivalence between the Orlicz and Luxemburg (quasi-) norms in the context of the generalized Orlicz spaces associated to an N-function Φ and a (quasi-) Banach function space X over a positive finite measure μ. We show that the Orlicz and the Luxemburg spaces do not coincide in general, and also that under mild requirements (σ-Fatou property, strictly monotone renorming) the coincidence holds. We use as a technical tool the classes LΦ w(m), LΦ(m) and LΦ( m ) of Orlicz spaces of scalar integrable functions with respect to a Banach space-valued countably additive vector measure m, providing also some new results on these spaces. ; Junta de Andalucía FQM-133 ; Ministerio de Ciencia, Innovación y Universidades MTM2016-77054-C2-1-P2