Singular anisotropic equations with a sign-changing perturbation

We consider an anisotropic Dirichlet problem driven by the variable (p, q)-Laplacian (double phase problem). In the reaction, we have the competing effects of a singular term and of a superlinear perturbation. Contrary to most of the previous papers, we assume that the perturbation changes sign. We prove a multiplicity result producing two positive smooth solutions when the coefficient function in the singular term is small in the L∞-norm.

Verfasser: Zhenhai Liu
Nikolaos S. Papageorgiou
Dokumenttyp: Artikel
Erscheinungsdatum: 2023
Reihe/Periodikum: Nonlinear Analysis, Vol 28, Iss 6 (2023)
Verlag/Hrsg.: Vilnius University Press
Schlagwörter: variable exponents / modular function / Luxemburg norm / regularity theory / maximum principle / Analysis / QA299.6-433
Sprache: Englisch
Permalink: https://search.fid-benelux.de/Record/base-29110380
Datenquelle: BASE; Originalkatalog
Powered By: BASE
Link(s) : https://doi.org/10.15388/namc.2023.28.33472