Rapid and robust phylotyping of spa t003, a dominant MRSA clone in Luxembourg and other European countries

Background: spa typing is a common genotyping tool for methicillin-resistant Staphylococcus aureus (MRSA) in Europe. Given the high prevalence of dominant clones, spa-typing is proving to be limited in its ability to distinguish outbreak isolates from background isolates. New molecular tools need to be employed to improve subtyping of dominant local MRSA strains (e.g., spa type t003). Methods: Phylogenetically critical, or canonical, SNPs (can-SNPs) were identified as subtyping targets through sequence analysis of 40 MRSA whole genomes from Luxembourg. Real-time PCR assays were designed around... Mehr ...

Verfasser: Engelthaler, David M.
Kelley, Erin
Driebe, Elizabeth M.
Bowers, Jolene
Eberhard, Carl F.
Trujillo, Jesse
Decruyenaere, Frederic
Schupp, James M.
Mossong, Joel
Keim, Paul
Even, Jos
Dokumenttyp: Artikel
Erscheinungsdatum: 2013
Schlagwörter: QH301 Biology / QH426 Genetics
Sprache: Englisch
Permalink: https://search.fid-benelux.de/Record/base-29105342
Datenquelle: BASE; Originalkatalog
Powered By: BASE
Link(s) : https://openknowledge.nau.edu/id/eprint/469/

Background: spa typing is a common genotyping tool for methicillin-resistant Staphylococcus aureus (MRSA) in Europe. Given the high prevalence of dominant clones, spa-typing is proving to be limited in its ability to distinguish outbreak isolates from background isolates. New molecular tools need to be employed to improve subtyping of dominant local MRSA strains (e.g., spa type t003). Methods: Phylogenetically critical, or canonical, SNPs (can-SNPs) were identified as subtyping targets through sequence analysis of 40 MRSA whole genomes from Luxembourg. Real-time PCR assays were designed around target SNPs and validated using a repository of 240 previously sub-typed and epidemiologically characterized Luxembourg MRSA isolates, including 153 community and hospital isolates, 69 isolates from long term care (LTC) facilities, and 21 prospectively analyzed MRSA isolates. Selected isolates were also analyzed by whole genome SNP typing (WGST) for comparison to the SNP assays and other subtyping techniques. Results: Fourteen real-time PCR assays were developed and validated, including two assays to determine presence of spa t003 or t008. The other twelve assays successfully provided a high degree of resolution within the t003 subtype. WGST analysis of the LTC facility isolates provided greater resolution than other subtyping tools, identifying clusters indicative of ongoing transmission within LTC facilities. Conclusions: canSNP-based PCR assays are useful for local level MRSA phylotyping, especially in the presence of one or more dominant clones. The assays designed here can be easily adapted for investigating t003 MRSA strains in other regions in Western Europe. WGST provides substantially better resolution than other typing methods.