Coupling Activity-Based Modeling and Life Cycle Assessment—A Proof-of-Concept Study on Cross-Border Commuting in Luxembourg
According to the Intergovernmental Panel on Climate Change (IPCC), in 2010 the transport sector was responsible for 23% of the total energy-related CO 2 emissions (6.7 GtCO 2 ) worldwide. Policy makers in Luxembourg are well-aware of the challenges and are setting ambitious objectives at country level for the mid and long term. However, a framework to assess environmental impacts from a life cycle perspective on the scale of transport policy scenarios, rather than individual vehicles, is lacking. We present a novel framework linking activity-based modeling with life cycle assessment (LCA) and... Mehr ...
Verfasser: | |
---|---|
Dokumenttyp: | Artikel |
Erscheinungsdatum: | 2019 |
Reihe/Periodikum: | Sustainability, Vol 11, Iss 15, p 4067 (2019) |
Verlag/Hrsg.: |
MDPI AG
|
Schlagwörter: | life cycle assessment / activity-based modeling / policy analysis / sustainable mobility / Environmental effects of industries and plants / TD194-195 / Renewable energy sources / TJ807-830 / Environmental sciences / GE1-350 |
Sprache: | Englisch |
Permalink: | https://search.fid-benelux.de/Record/base-29104280 |
Datenquelle: | BASE; Originalkatalog |
Powered By: | BASE |
Link(s) : | https://doi.org/10.3390/su11154067 |
According to the Intergovernmental Panel on Climate Change (IPCC), in 2010 the transport sector was responsible for 23% of the total energy-related CO 2 emissions (6.7 GtCO 2 ) worldwide. Policy makers in Luxembourg are well-aware of the challenges and are setting ambitious objectives at country level for the mid and long term. However, a framework to assess environmental impacts from a life cycle perspective on the scale of transport policy scenarios, rather than individual vehicles, is lacking. We present a novel framework linking activity-based modeling with life cycle assessment (LCA) and a proof-of-concept case study for the French cross-border commuters working in Luxembourg. Our framework allows for the evaluation of specific policies formulated on the trip level as well as aggregated evaluation of environmental impacts from a life cycle perspective. The results of our proof-of-concept-based case study suggest that only a combination of: (1) policy measures improving the speed and coverage of the public transport system; (2) policy measures fostering electric mobility; and (3) external factors such as de-carbonizing the electricity mix will allow to counteract the expected increase in impacts due to the increase of mobility needs of the growing commuting population in the long term.