Removal of deep-sea sponges by bottom trawling in the Flemish Cap area: conservation, ecology and economic assessment
ABSTRACT Deep-sea sponge grounds are vulnerable marine ecosystems, which through their benthic-pelagic coupling of nutrients, are of functional relevance to the deep-sea realm. The impact of fishing bycatch is here evaluated for the first time at a bathyal, sponge-dominated ecosystem in the high seas managed by the Northwest Atlantic Fisheries Organization. Sponge biomass surfaces created from research survey data using both random forest modeling and a gridded surface revealed 231,140 t of sponges in the area. About 65% of that biomass was protected by current fisheries closures. However, pro... Mehr ...
Verfasser: | |
---|---|
Dokumenttyp: | Artikel |
Erscheinungsdatum: | 2019 |
Verlag/Hrsg.: |
Zenodo
|
Schlagwörter: | Flemish Cap / trawling / conservation / economics / random forest modeling / deep-sea / European Union / Horizon 2020 / Deep-sea Sponge Grounds Ecosystems of the North Atlantic: An integrated approach towards their preservation and sustainable exploitation / SponGES / Grant Agreement No 679849 |
Sprache: | unknown |
Permalink: | https://search.fid-benelux.de/Record/base-29066993 |
Datenquelle: | BASE; Originalkatalog |
Powered By: | BASE |
Link(s) : | https://doi.org/10.1038/s41598-019-52250-1 |
ABSTRACT Deep-sea sponge grounds are vulnerable marine ecosystems, which through their benthic-pelagic coupling of nutrients, are of functional relevance to the deep-sea realm. The impact of fishing bycatch is here evaluated for the first time at a bathyal, sponge-dominated ecosystem in the high seas managed by the Northwest Atlantic Fisheries Organization. Sponge biomass surfaces created from research survey data using both random forest modeling and a gridded surface revealed 231,140 t of sponges in the area. About 65% of that biomass was protected by current fisheries closures. However, projections of trawling tracks estimated that the sponge biomass within them would be wiped out in just 1 year by the current level of fishing activity if directed on the sponges. Because these sponges filter 56,143 ± 15,047 million litres of seawater daily, consume 63.11 ± 11.83 t of organic carbon through respiration, and affect the turnover of several nitrogen nutrients, their removal would likely affect the delicate ecological equilibrium of the deep-sea benthic ecosystem. We estimated that, on Flemish Cap, the economic value associated with seawater filtration by the sponges is nearly double the market value of the fish catch. Hence, fishery closures are essential to reach sponge conservation goals as economic drivers cannot be relied upon. ; DATA AVAILABILITY: The authors confirm that all data underlying the findings are fully available without restriction. Data from Canadian research vessel surveys are deposited in the Ocean Biogeographic Information System (OBIS) at http://obiscanada.marinebiodiversity.ca/or http://www.iobis.org/. Spanish/EU data are available at Figshare with the https://doi.org/10.6084/m9.figshare.1165479. ACKNOWLEDGEMENTS: This research has been performed within the scope of the SponGES project, which received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 679849. This document reflects only the authors' views and the Executive Agency for ...