External validation of the Johns Hopkins Fall Risk Assessment Tool in older Dutch hospitalized patients
Purpose: Fall prevention is a safety goal in many hospitals. The performance of the Johns Hopkins Fall Risk Assessment Tool (JHFRAT) in older inpatients is largely unknown. We aimed to assess the JHFRAT performance in a large sample of Dutch older inpatients, including its trend over time. Methods: We used an Electronic Health Records (EHR) dataset with hospitalized patients (≥ 70), admitted for ≥ 24 h between 2016 and 2021. Inpatient falls were extracted from structured and free-text data. We assessed the association between JHFRAT and falls using logistic regression. For test accuracy, we ca... Mehr ...
Verfasser: | |
---|---|
Dokumenttyp: | Artikel |
Erscheinungsdatum: | 2022 |
Reihe/Periodikum: | Damoiseaux-Volman , B A , van Schoor , N M , Medlock , S , Romijn , J A , van der Velde , N & Abu-Hanna , A 2022 , ' External validation of the Johns Hopkins Fall Risk Assessment Tool in older Dutch hospitalized patients ' , European Geriatric Medicine . https://doi.org/10.1007/s41999-022-00719-0 |
Sprache: | Englisch |
Permalink: | https://search.fid-benelux.de/Record/base-29047636 |
Datenquelle: | BASE; Originalkatalog |
Powered By: | BASE |
Link(s) : | https://research.vumc.nl/en/publications/aba3f477-53ab-4541-871f-95eaf35b31d6 |
Purpose: Fall prevention is a safety goal in many hospitals. The performance of the Johns Hopkins Fall Risk Assessment Tool (JHFRAT) in older inpatients is largely unknown. We aimed to assess the JHFRAT performance in a large sample of Dutch older inpatients, including its trend over time. Methods: We used an Electronic Health Records (EHR) dataset with hospitalized patients (≥ 70), admitted for ≥ 24 h between 2016 and 2021. Inpatient falls were extracted from structured and free-text data. We assessed the association between JHFRAT and falls using logistic regression. For test accuracy, we calculated sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Discrimination was measured by the AUC. For calibration, we plotted the predicted fall probability with the actual probability of falls. For time-related effects, we calculated the AUC per 6 months (using data of patients admitted during the 6 months’ time interval) and plotted these different AUC values over time. Furthermore, we compared the model (JHFRAT and falls) with and without adjusting for seasonal influenza, COVID-19, spring, summer, fall or winter periods. Results: Data included 17,263 admissions with at least 1 JHFRAT measurement, a median age of 76 and a percentage female of 47%. The in-hospital fall prevalence was 2.5%. JHFRAT [OR = 1.11 (1.03–1.20)] and its subcategories were significantly associated with falls. For medium/high risk of falls (JHFRAT > 5), sensitivity was 73%, specificity 51%, PPV 4% and NPV 99%. The overall AUC was 0.67, varying over time between 0.62 and 0.71 (for 6 months’ time intervals). Seasonal influenza did affect the association between JHFRAT and falls. COVID-19, spring, summer, fall or winter did not affect the association. Conclusions: Our results show an association between JHFRAT and falls, a low discrimination by JHFRAT for older inpatients and over-prediction in the calibration. Improvements in the fall-risk assessment are warranted to improve efficiency.