Prediction of long-term hospitalisation and all-cause mortality in patients with chronic heart failure on Dutch claims data:a machine learning approach
Background: Accurately predicting which patients with chronic heart failure (CHF) are particularly vulnerable for adverse outcomes is of crucial importance to support clinical decision making. The goal of the current study was to examine the predictive value on long term heart failure (HF) hospitalisation and all-cause mortality in CHF patients, by exploring and exploiting machine learning (ML) and traditional statistical techniques on a Dutch health insurance claims database. Methods: Our study population consisted of 25,776 patients with a CHF diagnosis code between 2012 and 2014 and one yea... Mehr ...
Verfasser: |
van der Galiën, Onno P.
Hoekstra, René C.
Gürgöze, Muhammed T.
Manintveld, Olivier C.
van den Bunt, Mark R.
Veenman, Cor J.
Boersma, Eric |
Dokumenttyp: |
Artikel |
Erscheinungsdatum: |
2021 |
Reihe/Periodikum: |
van der Galiën , O P , Hoekstra , R C , Gürgöze , M T , Manintveld , O C , van den Bunt , M R , Veenman , C J & Boersma , E 2021 , ' Prediction of long-term hospitalisation and all-cause mortality in patients with chronic heart failure on Dutch claims data : a machine learning approach ' , BMC Medical Informatics and Decision Making , vol. 21 , no. 1 , 303 . https://doi.org/10.1186/s12911-021-01657-w |
Schlagwörter: |
/dk/atira/pure/sustainabledevelopmentgoals/good_health_and_well_being
/ name=SDG 3 - Good Health and Well-being |
Sprache: |
Englisch |
Permalink: |
https://search.fid-benelux.de/Record/base-29042586 |
Datenquelle: |
BASE;
Originalkatalog |
Powered By: |
BASE |
Link(s) :
|
https://pure.eur.nl/en/publications/676898dc-3231-4824-936d-a9626258deb8 |