Modelling time change in survey response rates: A Bayesian approach with an application to the Dutch Health Survey
Precise and unbiased estimates of response propensities (RPs) play a decisive role in the monitoring, analysis, and adaptation of data collection. In a fixed survey climate, those parameters are stable and their estimates ultimately converge when sufficient historic data is collected. In survey practice, however, response rates gradually vary in time. Understanding time-dependent variation in predicting response rates is key when adapting survey design. This paper illuminates time-dependent variation in response rates through multi-level time-series models. Reliable predictions can be generate... Mehr ...
Verfasser: | |
---|---|
Dokumenttyp: | Artikel |
Erscheinungsdatum: | 2023 |
Schlagwörter: | Bayesian analysis / Multilevel model / Response propensity / Time series / Taverne |
Sprache: | Englisch |
Permalink: | https://search.fid-benelux.de/Record/base-29040131 |
Datenquelle: | BASE; Originalkatalog |
Powered By: | BASE |
Link(s) : | https://dspace.library.uu.nl/handle/1874/434247 |
Precise and unbiased estimates of response propensities (RPs) play a decisive role in the monitoring, analysis, and adaptation of data collection. In a fixed survey climate, those parameters are stable and their estimates ultimately converge when sufficient historic data is collected. In survey practice, however, response rates gradually vary in time. Understanding time-dependent variation in predicting response rates is key when adapting survey design. This paper illuminates time-dependent variation in response rates through multi-level time-series models. Reliable predictions can be generated by learning from historic time series and updating with new data in a Bayesian framework. As an illustrative case study, we focus on Web response rates in the Dutch Health Survey from 2014 to 2019.