Bicycle Data-Driven Application Framework: A Dutch Case Study on Machine Learning-Based Bicycle Delay Estimation at Signalized Intersections Using Nationwide Sparse GPS Data

Data-driven approaches are helpful for quantitative justification and performance evaluation. The Netherlands has made notable strides in establishing a national protocol for bicycle traffic counting and collecting GPS cycling data through initiatives such as the Talking Bikes program. This article addresses the need for a generic framework to harness cycling data and extract relevant insights. Specifically, it focuses on the application of estimating average bicycle delays at signalized intersections, as this is an essential variable in assessing the performance of the transportation system.... Mehr ...

Verfasser: Yufei Yuan
Kaiyi Wang
Dorine Duives
Serge Hoogendoorn
Sascha Hoogendoorn-Lanser
Rick Lindeman
Dokumenttyp: Artikel
Erscheinungsdatum: 2023
Reihe/Periodikum: Sensors, Vol 23, Iss 24, p 9664 (2023)
Verlag/Hrsg.: MDPI AG
Schlagwörter: data-driven bicycle applications / GPS cycling data / machine learning / bicycle delays / signalized intersections / Chemical technology / TP1-1185
Sprache: Englisch
Permalink: https://search.fid-benelux.de/Record/base-28988611
Datenquelle: BASE; Originalkatalog
Powered By: BASE
Link(s) : https://doi.org/10.3390/s23249664