Performance of federated learning-based models in the Dutch TAVI population was comparable to central strategies and outperformed local strategies

BackgroundFederated learning (FL) is a technique for learning prediction models without sharing records between hospitals. Compared to centralized training approaches, the adoption of FL could negatively impact model performance.AimThis study aimed to evaluate four types of multicenter model development strategies for predicting 30-day mortality for patients undergoing transcatheter aortic valve implantation (TAVI): (1) central, learning one model from a centralized dataset of all hospitals; (2) local, learning one model per hospital; (3) federated averaging (FedAvg), averaging of local model... Mehr ...

Verfasser: Tsvetan R. Yordanov
Anita C. J. Ravelli
Saba Amiri
Marije Vis
Saskia Houterman
Sebastian R. Van der Voort
Ameen Abu-Hanna
Dokumenttyp: Artikel
Erscheinungsdatum: 2024
Reihe/Periodikum: Frontiers in Cardiovascular Medicine, Vol 11 (2024)
Verlag/Hrsg.: Frontiers Media S.A.
Schlagwörter: federated learning / multicenter / prediction models / TAVI / distributed machine learning / privacy-preserving algorithms / Diseases of the circulatory (Cardiovascular) system / RC666-701
Sprache: Englisch
Permalink: https://search.fid-benelux.de/Record/base-28987273
Datenquelle: BASE; Originalkatalog
Powered By: BASE
Link(s) : https://doi.org/10.3389/fcvm.2024.1399138