Quantitative rainfall analysis of the 2021 mid-July flood event in Belgium

The exceptional flood of July 2021 in central Europe impacted Belgium severely. As rainfall was the triggering factor of this event, this study aims to characterize rainfall amounts in Belgium from 13 to 16 July 2021 based on two types of observational data. First, observations recorded by high-quality rain gauges operated by weather and hydrological services in Belgium have been compiled and quality checked. Second, a radar-based rainfall product has been improved to provide a reliable estimation of quantitative precipitation at high spatial and temporal resolutions over Belgium. Several anal... Mehr ...

Verfasser: M. Journée
E. Goudenhoofdt
S. Vannitsem
L. Delobbe
Dokumenttyp: Artikel
Erscheinungsdatum: 2023
Reihe/Periodikum: Hydrology and Earth System Sciences, Vol 27, Pp 3169-3189 (2023)
Verlag/Hrsg.: Copernicus Publications
Schlagwörter: Technology / T / Environmental technology. Sanitary engineering / TD1-1066 / Geography. Anthropology. Recreation / G / Environmental sciences / GE1-350
Sprache: Englisch
Permalink: https://search.fid-benelux.de/Record/base-28972415
Datenquelle: BASE; Originalkatalog
Powered By: BASE
Link(s) : https://doi.org/10.5194/hess-27-3169-2023

The exceptional flood of July 2021 in central Europe impacted Belgium severely. As rainfall was the triggering factor of this event, this study aims to characterize rainfall amounts in Belgium from 13 to 16 July 2021 based on two types of observational data. First, observations recorded by high-quality rain gauges operated by weather and hydrological services in Belgium have been compiled and quality checked. Second, a radar-based rainfall product has been improved to provide a reliable estimation of quantitative precipitation at high spatial and temporal resolutions over Belgium. Several analyses of these data are performed here to describe the spatial and temporal distribution of rainfall during the event. These analyses indicate that the rainfall accumulations during the event reached unprecedented levels over large areas. Accumulations over durations from 1 to 3 d significantly exceeded the 200-year return level in several places, with up to 90 % of exceedance over the 200-year return level for 2 and 3 d values locally in the Vesdre Basin. Such a record-breaking event needs to be documented as much as possible, and available observational data must be shared with the scientific community for further studies in hydrology, in urban planning and, more generally, in all multi-disciplinary studies aiming to identify and understand factors leading to such disaster. The corresponding rainfall data are therefore provided freely in a supplement ( Journée et al. , 2023 ; Goudenhoofdt et al. , 2023 ) .