Reconstructing seasonality through stable-isotope and trace-element analyses of the Proserpine stalagmite, Han-sur-Lesse cave, Belgium: Indications for climate-driven changes during the last 400 years
Fast-growing speleothems allow for the reconstruction of palaeoclimate down to a seasonal scale. Additionally, annual lamination in some of these speleothems yields highly accurate age models for these palaeoclimate records, making these speleothems valuable archives for terrestrial climate. In this study, an annually laminated stalagmite from the Han-sur-Lesse cave (Belgium) is used to study the expression of the seasonal cycle in northwestern Europe during the Little Ice Age. More specifically, two historical 12-year-long growth periods (ca. 1593-1605 CE and 1635-1646 CE) and one modern grow... Mehr ...
Verfasser: | |
---|---|
Dokumenttyp: | Artikel |
Erscheinungsdatum: | 2020 |
Schlagwörter: | Global and Planetary Change / Stratigraphy / Palaeontology |
Sprache: | Englisch |
Permalink: | https://search.fid-benelux.de/Record/base-28961760 |
Datenquelle: | BASE; Originalkatalog |
Powered By: | BASE |
Link(s) : | https://dspace.library.uu.nl/handle/1874/408297 |
Fast-growing speleothems allow for the reconstruction of palaeoclimate down to a seasonal scale. Additionally, annual lamination in some of these speleothems yields highly accurate age models for these palaeoclimate records, making these speleothems valuable archives for terrestrial climate. In this study, an annually laminated stalagmite from the Han-sur-Lesse cave (Belgium) is used to study the expression of the seasonal cycle in northwestern Europe during the Little Ice Age. More specifically, two historical 12-year-long growth periods (ca. 1593-1605 CE and 1635-1646 CE) and one modern growth period (1960-2010 CE) are analysed on a sub-annual scale for their stable-isotope ratios ( δ13 C and δ18 O) and trace-element (Mg, Sr, Ba, Zn, Y, Pb, U) contents. Seasonal variability in these proxies is confirmed with frequency analysis. Zn, Y and Pb show distinct annual peaks in all three investigated periods related to annual flushing of the soil during winter. A strong seasonal in-phase relationship between Mg, Sr and Ba in the modern growth period reflects a substantial influence of enhanced prior calcite precipitation (PCP). In particular, PCP occurs during summers when recharge of the epikarst is low. This is also evidenced by earlier observations of increased δ13 C values during summer. In the 17th century intervals, there is a distinct antiphase relationship between Mg, Sr and Ba, suggesting that processes other than PCP, i.e. varying degrees of incongruent dissolution of dolomite, eventually related to changes in soil activity and/or land-use change are more dominant. The processes controlling seasonal variations in Mg, Sr and Ba in the speleothem appear to change between the 17th century and 1960-2010 CE. The Zn, Y, Pb, and U concentration profiles; stable-isotope ratios; and morphology of the speleothem laminae all point towards increased seasonal amplitude in cave hydrology. Higher seasonal peaks in soil-derived elements (e.g. Zn and Y) and lower concentrations of host-rock-derived elements (e.g. Mg, Sr, Ba) ...