Winter season changes in Belgium: the MAR model contribution to the CORDEX.be project
In the framework of the CORDEX.be project funded by Belspo, most universities and research institutes of Belgium have worked together in order to gather existing and ongoing Belgian research activities in the domain of climate modelling to create a coherent scientific basis for future climate services in Belgium. The Laboratory of Climatology of the University of Liège has performed climate simulations using the regional climate model MAR (“Modèle Atmosphérique Régional” in French) at a resolution of 5 km over the period 1959-2014. This research aims to study the evolution of several variables... Mehr ...
Verfasser: | |
---|---|
Dokumenttyp: | conference paper not in proceedings |
Erscheinungsdatum: | 2017 |
Schlagwörter: | Belgium / winter / snow / cordex / MAR / Physical / chemical / mathematical & earth Sciences / Earth sciences & physical geography / Physique / chimie / mathématiques & sciences de la terre / Sciences de la terre & géographie physique |
Sprache: | Englisch |
Permalink: | https://search.fid-benelux.de/Record/base-28940945 |
Datenquelle: | BASE; Originalkatalog |
Powered By: | BASE |
Link(s) : | https://orbi.uliege.be/handle/2268/217416 |
In the framework of the CORDEX.be project funded by Belspo, most universities and research institutes of Belgium have worked together in order to gather existing and ongoing Belgian research activities in the domain of climate modelling to create a coherent scientific basis for future climate services in Belgium. The Laboratory of Climatology of the University of Liège has performed climate simulations using the regional climate model MAR (“Modèle Atmosphérique Régional” in French) at a resolution of 5 km over the period 1959-2014. This research aims to study the evolution of several variables computed by MAR during the winters of the last 50 years. Except in snow accumulation, results show no statistically significant trend in winter temperature or precipitation in Belgium. This results from the strong influence of natural large-scale/low-frequency oscillations in the atmospheric circulation in winter such as the North Atlantic Oscillation. ; CORDEX.be