Seasonal variation of short-, medium- and long-chain chlorinated paraffin distribution in Belgian indoor dust

Chlorinated paraffins (CPs) are high production volume plasticizers and flame retardants, which have exhibited bioaccumulative and toxic properties. CPs may be released from treated consumer goods and bind with indoor dust, leading to human exposure via unintentional dust ingestion. In this study, the concentrations and homologue distribution of CPs were measured in 50 indoor dust samples collected in paired winter and summer sampling campaigns from 25 homes in Flanders, Belgium. Short-, medium- and long-chain CPs (SCCPs (C10-13), MCCPs (C14-17) and LCCPs (C18-20), respectively) were each dete... Mehr ...

Verfasser: Thomas J. McGrath
Christina Christia
Giulia Poma
Adrian Covaci
Dokumenttyp: Artikel
Erscheinungsdatum: 2022
Reihe/Periodikum: Environment International, Vol 170, Iss , Pp 107616- (2022)
Verlag/Hrsg.: Elsevier
Schlagwörter: Chlorinated paraffins (CPs) / Human exposure / Indoor dust / Seasonal variation / Liquid chromatography quadrupole-time-of-flight mass spectrometry (LC-QTOF-MS) / Environmental sciences / GE1-350
Sprache: Englisch
Permalink: https://search.fid-benelux.de/Record/base-28886723
Datenquelle: BASE; Originalkatalog
Powered By: BASE
Link(s) : https://doi.org/10.1016/j.envint.2022.107616

Chlorinated paraffins (CPs) are high production volume plasticizers and flame retardants, which have exhibited bioaccumulative and toxic properties. CPs may be released from treated consumer goods and bind with indoor dust, leading to human exposure via unintentional dust ingestion. In this study, the concentrations and homologue distribution of CPs were measured in 50 indoor dust samples collected in paired winter and summer sampling campaigns from 25 homes in Flanders, Belgium. Short-, medium- and long-chain CPs (SCCPs (C10-13), MCCPs (C14-17) and LCCPs (C18-20), respectively) were each detected in all Belgian indoor dust samples with overall median concentrations of 6.1 µg/g (range 0.61 to 120 µg/g), 45 µg/g (range 4.5 to 520 µg/g) and 4.5 µg/g (range 0.3 to 50 µg/g), respectively. Concentrations were significantly higher in the winter samples than summer for each of the three groups (p < 0.05). LCCPs homologues ranging from C21-32 were also detected in dust samples and accounted for approximately half of the LCCP relative abundance based on instrumental peak area, although a lack of appropriate analytical standards prevented quantification of these homologues. While clear sources of CP contamination in dust could not be identified, significant associations between concentrations of ∑SCCPs, ∑MCCPs and ∑LCCPs (C18-20) (p < 0.05) suggested the combined application within materials or products in homes. Based on typical exposure scenarios, estimated daily intake of ∑CPs (C10-20) for adults and toddlers were 14 and 270 ng/kg bw/day, respectively, though margin of exposure assessments for SCCPs and MCCPs indicated that adverse health effects were unlikely for all exposure scenarios. This study presents the first evidence of seasonal variation in the levels and distribution for each of the SCCP, MCCP and LCCP classes in indoor dust and highlights the urgent need for appropriate analytical standards for LCCP quantification.