Allele and genotype frequencies of the SOD1 gene polymorphism associated with canine degenerative myelopathy in Belgian Malinois dogs in Greece
Background and Aim: Canine degenerative myelopathy (CDM) is an adult-onset fatal disorder associated with a point mutation of the superoxide dismutase 1 (SOD1) gene (SOD1:c.118G>A). This study aimed to determine the allele and genotype frequencies of this mutation in a group of Belgian Malinois dogs in Greece. Materials and Methods: Samples (n=72) of whole blood were collected from 72 purebred dogs of the Hellenic Armed Forces; these samples were processed for DNA isolation, polymerase chain reaction, and digestion with the restriction endonuclease AcuI. Sample testing was conducted in comp... Mehr ...
Verfasser: | |
---|---|
Dokumenttyp: | Artikel |
Erscheinungsdatum: | 2021 |
Reihe/Periodikum: | Veterinary World, Vol 14, Iss 6, Pp 1472-1479 (2021) |
Verlag/Hrsg.: |
Veterinary World
|
Schlagwörter: | degenerative myelopathy / dogs / genetic analysis / genetic polymorphism / restriction fragment length polymorphism-polymerase chain reaction / sod1:c.118a / Animal culture / SF1-1100 / Veterinary medicine / SF600-1100 |
Sprache: | Englisch |
Permalink: | https://search.fid-benelux.de/Record/base-28886433 |
Datenquelle: | BASE; Originalkatalog |
Powered By: | BASE |
Link(s) : | https://doi.org/10.14202/vetworld.2021.1472-1479 |
Background and Aim: Canine degenerative myelopathy (CDM) is an adult-onset fatal disorder associated with a point mutation of the superoxide dismutase 1 (SOD1) gene (SOD1:c.118G>A). This study aimed to determine the allele and genotype frequencies of this mutation in a group of Belgian Malinois dogs in Greece. Materials and Methods: Samples (n=72) of whole blood were collected from 72 purebred dogs of the Hellenic Armed Forces; these samples were processed for DNA isolation, polymerase chain reaction, and digestion with the restriction endonuclease AcuI. Sample testing was conducted in compliance with ISO17025 accreditation requirements. Results: The observed relative genotype frequencies were 71% for the homozygous (GG), 25% for the heterozygous (AG), and 4% for the homozygous mutant (AA) alleles. These frequencies were close to those expected, indicating no significant departure from Hardy–Weinberg equilibrium (HWE, p=0.395). The frequency of heterozygous animals indicates that a high risk of developing CDM in forthcoming generations exists in the tested population because mating among carriers would result in 25% AA progeny. The medical record of the group of study animals indicated selection against leishmaniosis, as applied throughout generations by owners and breeders. The potential association of this selection with the HWE status of the study population was discussed. Conclusion: The SOD1:c.118G>A mutation was common in the tested group of dogs; thus, they are suitable for a follow-up investigation on the development and progression of CDM. A case-control study on animals with evidence of sensitivity to infectious myelopathy could provide new insights into disease pathogenesis.