A comprehensive biogeochemical record and annual flux estimates for the Sabaki River (Kenya)

Inland waters impart considerable influence on nutrient cycling and budget estimates across local, regional and global scales, whilst anthropogenic pressures, such as rising populations and the appropriation of land and water resources, are undoubtedly modulating the flux of carbon (C), nitrogen (N) and phosphorus (P) between terrestrial biomes to inland waters, and the subsequent flux of these nutrients to the marine and atmospheric domains. Here, we present a 2-year biogeochemical record (October 2011–December 2013) at biweekly sampling resolution for the lower Sabaki River, Kenya, and provi... Mehr ...

Verfasser: T. R. Marwick
F. Tamooh
B. Ogwoka
A. V. Borges
F. Darchambeau
S. Bouillon
Dokumenttyp: Artikel
Erscheinungsdatum: 2018
Reihe/Periodikum: Biogeosciences, Vol 15, Pp 1683-1700 (2018)
Verlag/Hrsg.: Copernicus Publications
Schlagwörter: Ecology / QH540-549.5 / Life / QH501-531 / Geology / QE1-996.5
Sprache: Englisch
Permalink: https://search.fid-benelux.de/Record/base-28819525
Datenquelle: BASE; Originalkatalog
Powered By: BASE
Link(s) : https://doi.org/10.5194/bg-15-1683-2018

Inland waters impart considerable influence on nutrient cycling and budget estimates across local, regional and global scales, whilst anthropogenic pressures, such as rising populations and the appropriation of land and water resources, are undoubtedly modulating the flux of carbon (C), nitrogen (N) and phosphorus (P) between terrestrial biomes to inland waters, and the subsequent flux of these nutrients to the marine and atmospheric domains. Here, we present a 2-year biogeochemical record (October 2011–December 2013) at biweekly sampling resolution for the lower Sabaki River, Kenya, and provide estimates for suspended sediment and nutrient export fluxes from the lower Sabaki River under pre-dam conditions, and in light of the approved construction of the Thwake Multipurpose Dam on its upper reaches (Athi River). Erratic seasonal variation was typical for most parameters, with generally poor correlation between discharge and material concentrations, and stable isotope values of C ( δ 13 C) and N ( δ 15 N). Although high total suspended matter (TSM) concentrations are reported here (up to ∼ 3.8 g L −1 ), peak concentrations of TSM rarely coincided with peak discharge. The contribution of particulate organic C (POC) to the TSM pool indicates a wide biannual variation in suspended sediment load from OC poor (0.3 %) to OC rich (14.9 %), with the highest %POC occurring when discharge is < 100 m 3 s −1 and at lower TSM concentrations. The consistent 15 N enrichment of the particulate nitrogen (PN) pool compared to other river systems indicates anthropogenic N loading is a year-round driver of N export from the Sabaki Basin. The lower Sabaki River was consistently oversaturated in dissolved methane (CH 4 ; from 499 to 135 111 %) and nitrous oxide (N 2 O; 100 to 463 %) relative to atmospheric concentrations. Wet season flows (October–December and March–May) carried > 80 % of the total load for TSM (∼ 86 %), POC (∼ 89 %), dissolved organic carbon (DOC; ∼ 81 %), PN (∼ 89 %) and particulate phosphorus (TPP; ∼ 82 %), ...