Spatial analysis of fatal and injury crashes in Flanders, Belgium: application of geographically weighted regression technique

Generalized Linear Models (GLMs) are the most widely used models utilized in crash prediction studies. These models illustrate the relationships between the dependent and explanatory variables by estimating fixed global estimates. Since the crash occurrences are often spatially heterogeneous and are affected by many spatial variables, the existence of spatial correlation in the data is examined by means of calculating Moran's I measures for dependent and explanatory. The results indicate the necessity of considering the spatial correlation when developing crash prediction models. The main obje... Mehr ...

Verfasser: Pirdavani, Ali
Brijs, Tom
Bellemans, Tom
Wets, Geert
Dokumenttyp: conferenceObject
Erscheinungsdatum: 2013
Verlag/Hrsg.: Transportation Research Board
Sprache: Englisch
Permalink: https://search.fid-benelux.de/Record/base-28648687
Datenquelle: BASE; Originalkatalog
Powered By: BASE
Link(s) : http://hdl.handle.net/1942/14565

Generalized Linear Models (GLMs) are the most widely used models utilized in crash prediction studies. These models illustrate the relationships between the dependent and explanatory variables by estimating fixed global estimates. Since the crash occurrences are often spatially heterogeneous and are affected by many spatial variables, the existence of spatial correlation in the data is examined by means of calculating Moran's I measures for dependent and explanatory. The results indicate the necessity of considering the spatial correlation when developing crash prediction models. The main objective of this research is to develop different Zonal Crash Prediction Models (ZCPMs) within the Geographically Weighted Generalized Linear Models (GWGLM) framework in order to explore the spatial variations in association between Number of Injury Crashes (NOICs) (including fatal, severely and slightly injury crashes) and other explanatory variables. Different exposure, network and socio-demographic variables of 2200 Traffic Analysis Zones(TAZs) are considered as predictors of crashes in the study area, Flanders, Belgium. To this end, an activity-based transportation model framework is applied to produce exposure measurements while the network and socio-demographic variables are collected from other sources. Crash data used in this study consist of recorded crashes between 2004 and 2007. GWGLMs are developed using a Poisson error distribution and are often referred to as Geographically Weighted Poisson Regression (GWPR) models. Moreover, the performances of developed GWPR models are compared with their corresponding GLMs. The results show that GWPR models outperform the GLM models; this is due to the capability of GWPR models in capturing the spatial heterogeneity of crashes.