Precipitation Evolution over Belgium by 2100 and Sensitivity to Convective Schemes Using the Regional Climate Model MAR

peer reviewed ; The first aim of this study is to determine if changes in precipitation and more specifically in convective precipitation are projected in a warmer climate over Belgium. The second aim is to evaluate if these changes are dependent on the convective scheme used. For this purpose, the regional climate model Modèle Atmosphérique Régional (MAR) was forced by two general circulation models (NorESM1-M and MIROC5) with five convective schemes (namely: two versions of the Bechtold schemes, the Betts–Miller–Janjić scheme, the Kain–Fritsch scheme, and the modified Tiedtke scheme) in orde... Mehr ...

Verfasser: Doutreloup, Sébastien
Kittel, Christoph
Wyard, Coraline
Belleflamme, Alexandre
Amory, Charles
Erpicum, Michel
Fettweis, Xavier
Dokumenttyp: journal article
Erscheinungsdatum: 2019
Verlag/Hrsg.: Multidisciplinary Digital Publishing Institute (MDPI)
Schlagwörter: precipitation / climate change / regional modeling / convective scheme / Belgium / Physical / chemical / mathematical & earth Sciences / Earth sciences & physical geography / Physique / chimie / mathématiques & sciences de la terre / Sciences de la terre & géographie physique
Sprache: Englisch
Permalink: https://search.fid-benelux.de/Record/base-28543008
Datenquelle: BASE; Originalkatalog
Powered By: BASE
Link(s) : https://orbi.uliege.be/handle/2268/236788

peer reviewed ; The first aim of this study is to determine if changes in precipitation and more specifically in convective precipitation are projected in a warmer climate over Belgium. The second aim is to evaluate if these changes are dependent on the convective scheme used. For this purpose, the regional climate model Modèle Atmosphérique Régional (MAR) was forced by two general circulation models (NorESM1-M and MIROC5) with five convective schemes (namely: two versions of the Bechtold schemes, the Betts–Miller–Janjić scheme, the Kain–Fritsch scheme, and the modified Tiedtke scheme) in order to assess changes in future precipitation quantities/distributions and associated uncertainties. In a warmer climate (using RCP8.5), our model simulates a small increase of convective precipitation, but lower than the anomalies and the interannual variability over the current climate, since all MAR experiments simulate a stronger warming in the upper troposphere than in the lower atmospheric layers, favoring more stable conditions. No change is also projected in extreme precipitation nor in the ratio of convective precipitation. While MAR is more sensitive to the convective scheme when forced by GCMs than when forced by ERA-Interim over the current climate, projected changes from all MAR experiments compare well.