Biomanipulation in the Netherlands : 15 years of experience

Up to the mid 1950's Dutch lakes were characterised by clear water and luxurious macrophyte growth. In the 1960's eutrophication changed this situation and the lakes suffered from cyanobacterial blooms, turbid water and poor submerged vegetation. Restoration programmes were aimed at reducing the rates of the external phosphorus loading. Due to these measures, the nutrient- and chlorophyll-a concentrations decreased. The transparency of the water, however, increased only slightly. In the past one decade it has been recognised that eutrophication had given the turbid state various stabilising me... Mehr ...

Verfasser: Meijer, M.L.
Dokumenttyp: doctoralThesis
Erscheinungsdatum: 2000
Schlagwörter: aquatic ecosystems / biological water management / eutrophication / hydrobiology / netherlands / water management / aquatische ecosystemen / biologisch waterbeheer / eutrofiëring / hydrobiologie / nederland / waterbeheer
Sprache: Englisch
Permalink: https://search.fid-benelux.de/Record/base-27615032
Datenquelle: BASE; Originalkatalog
Powered By: BASE
Link(s) : https://research.wur.nl/en/publications/biomanipulation-in-the-netherlands-15-years-of-experience

Up to the mid 1950's Dutch lakes were characterised by clear water and luxurious macrophyte growth. In the 1960's eutrophication changed this situation and the lakes suffered from cyanobacterial blooms, turbid water and poor submerged vegetation. Restoration programmes were aimed at reducing the rates of the external phosphorus loading. Due to these measures, the nutrient- and chlorophyll-a concentrations decreased. The transparency of the water, however, increased only slightly. In the past one decade it has been recognised that eutrophication had given the turbid state various stabilising mechanisms through which it is very resistant to restoration measures centred on nutrient reduction.A drastic reduction of the fish stock, known as biomanipulation, was suggested as an alternative approach. This thesis examines and evaluates the potential of biomanipulation as an additional restoration method and tries to understand and explain the mechanisms involved.Alternative stable states (Chapter 2)The turbidity of lakes is generally considered to be a smooth function of their nutrient status. However, models and observations in lakes suggest that over a range of nutrient concentrations, shallow lakes can have two alternative equilibria: a clear state dominated by aquatic vegetation, and a turbid state characterised by high algal biomass. This bi-stability has important implications for the possibilities of restoring eutrophied lakes. The turbid state is stabilised by planktivorous fish consuming large zooplankton, the grazer of algae and by benthivorous fish resuspending the bottom sediment in search for food. Nutrient reduction alone may have only a little impact on water clarity, but an ecosystem disturbance like fish stock reduction may contribute to factors to bring the lake back to a clear state. Once the clear water state has led to colonisation of the lakes with macrophytes, the macrophytes will stabilise the clear water state by various mechanisms. They may increase sedimentation and reduce resuspension, they ...