Occurrence and distribution of ladderane oxidation products in different oceanic regimes

Ladderane fatty acids are commonly used as biomarkers for bacteria involved in anaerobic ammonium oxidation (anammox). These lipids have been experimentally shown to undergo aerobic microbial degradation to form short chain ladderane fatty acids. However, nothing is known of the production or the distribution of these oxic biodegradation products in the natural environment. In this study, we analysed marine water column particulate matter and sediment from three different oceanic regimes for the presence of ladderane oxidation products (C14 ladderane fatty acids) and of original ladderane fatt... Mehr ...

Verfasser: Rush, Darci
Hopmans, Ellen C
Wakeham, Stuart G
Schouten, Stefan
Sinninghe Damsté, Jaap S
Dokumenttyp: Dataset
Erscheinungsdatum: 2012
Verlag/Hrsg.: PANGAEA
Schlagwörter: NIOZ_UU / NIOZ Royal Netherlands Institute for Sea Research / and Utrecht University / Ocean Drilling Program / ODP
Sprache: Englisch
Permalink: https://search.fid-benelux.de/Record/base-27592435
Datenquelle: BASE; Originalkatalog
Powered By: BASE
Link(s) : https://doi.pangaea.de/10.1594/PANGAEA.885342

Ladderane fatty acids are commonly used as biomarkers for bacteria involved in anaerobic ammonium oxidation (anammox). These lipids have been experimentally shown to undergo aerobic microbial degradation to form short chain ladderane fatty acids. However, nothing is known of the production or the distribution of these oxic biodegradation products in the natural environment. In this study, we analysed marine water column particulate matter and sediment from three different oceanic regimes for the presence of ladderane oxidation products (C14 ladderane fatty acids) and of original ladderane fatty acids (C18 and C20 ladderane fatty acids). We found that ladderane oxidation products, i.e. C14 ladderane fatty acids, are already produced within the water column of the Arabian Sea oxygen minimum zone (OMZ) and thus only low amounts of oxygen (< 3 µM) are needed for the ?-oxidation of original ladderane fatty acids to proceed. However, no short chain ladderane fatty acids were detected in the Cariaco Basin water column, where oxygen concentrations were below detection limit, suggesting that the beta-oxidation pathway is inhibited by the absence of molecular oxygen, or that the microbes performing the degradation are not proliferating under these conditions. Comparison of distributions of ladderane fatty acids indicates that short chain ladderane fatty acids are mostly produced in the water column and at the sediment surface, before being preserved deeper in the sediments. Short chain ladderane fatty acids were abundant in Arabian Sea and Peru Margin sediments (ODP Leg 201), often in higher concentrations than the original ladderane fatty acids. In a sediment core taken from within the Arabian Sea OMZ, short chain ladderanes made up more than 90% of the total ladderanes at depths greater than 5 cm below sea floor. We also found short chain ladderanes in higher concentrations in hydrolysed sediment residues compared to those freely occurring in lipid extracts, suggesting that they had become bound to the sediment ...