Exploring the large-scale structure of Taylor-Couette turbulence through Large-Eddy Simulations

Large eddy simulations (LES) of Taylor-Couette (TC) flow, the flow between two co-axial and independently rotating cylinders are performed in an attempt to explore the large-scale axially-pinned structures seen in experiments and simulations. Both static and dynamic LES models are used. The Reynolds number is kept fixed at Re = 3.4 • 104, and the radius ratio η = ri/ro is set to η = 0.909, limiting the effects of curvature and resulting in frictional Reynolds numbers of around Reτ ≈ 500. Four rotation ratios from Rot =-0.0909 to Rot = 0.3 are simulated. First, the LES of TC is benchmarked for... Mehr ...

Verfasser: Roberto Verzicco
Rodolfo Ostilla-Mónico
Xiaojue Zhu
Dokumenttyp: Artikel
Erscheinungsdatum: 2018
Schlagwörter: H2020 / Netherlands / Social Science and Humanities / Advanced Grant / EC / European Research Council / European Commission / Digital Humanities and Cultural Heritage / General Physics and Astronomy
Sprache: unknown
Permalink: https://search.fid-benelux.de/Record/base-27591608
Datenquelle: BASE; Originalkatalog
Powered By: BASE
Link(s) : https://www.openaccessrepository.it/record/99697

Large eddy simulations (LES) of Taylor-Couette (TC) flow, the flow between two co-axial and independently rotating cylinders are performed in an attempt to explore the large-scale axially-pinned structures seen in experiments and simulations. Both static and dynamic LES models are used. The Reynolds number is kept fixed at Re = 3.4 • 104, and the radius ratio η = ri/ro is set to η = 0.909, limiting the effects of curvature and resulting in frictional Reynolds numbers of around Reτ ≈ 500. Four rotation ratios from Rot =-0.0909 to Rot = 0.3 are simulated. First, the LES of TC is benchmarked for different rotation ratios. Both the Smagorinsky model with a constant of cs = 0.1 and the dynamic model are found to produce reasonable results for no mean rotation and cyclonic rotation, but deviations increase for increasing rotation. This is attributed to the increasing anisotropic character of the fluctuations. Second, "over-damped" LES, i.e. LES with a large Smagorinsky constant is performed and is shown to reproduce some features of the large-scale structures, even when the near-wall region is not adequately modeled. This shows the potential for using over-damped LES for fast explorations of the parameter space where large-scale structures are found.