Carotenoid-binding Sites of the Major Light-harvesting Complex II of Higher Plants

Recombinant light-harvesting complex II (LHCII) proteins with modified carotenoid composition have been obtained by in vitro reconstitution of the Lhcb1 protein overexpressed in bacteria. The monomeric protein possesses three xanthophyll-binding sites. The L1 and L2 sites, localized by electron crystallography in the helix A/helix B cross, have the highest affinity for lutein, but also bind violaxanthin and zeaxanthin with lower affinity. The latter xanthophyll causes disruption of excitation energy transfer. The occupancy of at least one of these sites, probably L1, is essential for protein f... Mehr ...

Verfasser: Saskia Weiss
Roberta Croce
Roberto Bassi
Dokumenttyp: Artikel
Erscheinungsdatum: 1999
Schlagwörter: Netherlands / Aurora Universities Network / Cell Biology / Molecular Biology / Biochemistry
Sprache: Englisch
Permalink: https://search.fid-benelux.de/Record/base-27591555
Datenquelle: BASE; Originalkatalog
Powered By: BASE
Link(s) : https://www.openaccessrepository.it/record/94005

Recombinant light-harvesting complex II (LHCII) proteins with modified carotenoid composition have been obtained by in vitro reconstitution of the Lhcb1 protein overexpressed in bacteria. The monomeric protein possesses three xanthophyll-binding sites. The L1 and L2 sites, localized by electron crystallography in the helix A/helix B cross, have the highest affinity for lutein, but also bind violaxanthin and zeaxanthin with lower affinity. The latter xanthophyll causes disruption of excitation energy transfer. The occupancy of at least one of these sites, probably L1, is essential for protein folding. Neoxanthin is bound to a distinct site (N1) that is highly selective for this species and whose occupancy is not essential for protein folding. Whereas xanthophylls in the L1 and L2 sites interact mainly with chlorophyll a, neoxanthin shows strong interaction with chlorophyll b, inducing the hyperchromic effect of the 652 nm absorption band. This observation explains the recent results of energy transfer from carotenoids to chlorophyll b obtained by femtosecond absorption spectroscopy. Whereas xanthophylls in the L1 and L2 sites are active in photoprotection through chlorophyll-triplet quenching, neoxanthin seems to act mainly in 1O2/* scavenging.