Characterising Dutch forests, wetlands and cultivated lands on the basis of phytolith assemblages

Abstract Palaeoecological reconstructions in the Netherlands are commonly based on pollen and macrofossil analysis, but can be limited if the preservation of organic material is poor. Phytoliths, biogenic silica, do not have this limitation and preserve in settings where other macro- and microfossils do not. Little is known about how phytolith assemblages preserved in soils and sediments reflect the parent vegetation in north-western European systems, so it is currently difficult to contextualise past environments. Here, we characterise phytolith assemblages for soil samples recovered from thr... Mehr ...

Verfasser: de Wolf, Iris K.
McMichael, Crystal N.H.
Philip, Annemarie L.
Gosling, William D.
Dokumenttyp: Artikel
Erscheinungsdatum: 2022
Reihe/Periodikum: Netherlands Journal of Geosciences ; volume 101 ; ISSN 0016-7746 1573-9708
Verlag/Hrsg.: Cambridge University Press (CUP)
Sprache: Englisch
Permalink: https://search.fid-benelux.de/Record/base-27463745
Datenquelle: BASE; Originalkatalog
Powered By: BASE
Link(s) : http://dx.doi.org/10.1017/njg.2022.14

Abstract Palaeoecological reconstructions in the Netherlands are commonly based on pollen and macrofossil analysis, but can be limited if the preservation of organic material is poor. Phytoliths, biogenic silica, do not have this limitation and preserve in settings where other macro- and microfossils do not. Little is known about how phytolith assemblages preserved in soils and sediments reflect the parent vegetation in north-western European systems, so it is currently difficult to contextualise past environments. Here, we characterise phytolith assemblages for soil samples recovered from three major vegetation types in the Netherlands to provide reference data for future reconstructions of past vegetation change. We collected 42 soil surface samples from forests, wetlands and agricultural fields across the Netherlands and characterised the phytolith assemblages they contained. We identified the different phytolith morphotypes and quantified the percentages and concentrations (#phytoliths/cm 3 soil) in each sample. We used non-metric multidimensional scaling to assess the variation in phytolith assemblage composition within, and between, the three vegetation types. The phytolith assemblages analysed from the forests, wetlands and agricultural fields were clearly distinguishable from each other. Agricultural fields were dominated by four phytolith morphotypes of grass silica short cells (GSSCs): rondel (tabular), cross type 1 (>15 µm), rondel (elongated) and disturbance or crop phytoliths. Forests settings had significantly higher amounts of different arboreal phytoliths (large and small spheroid rugose) compared with other vegetation types. Wetlands could be identified by significantly higher amounts of Cyperaceae phytoliths (papillate) and other GSSCs (saddle and bilobates with thick castula). Phytolith assemblages could distinguish different subtypes of vegetation within forest and wetland areas, while differences between agricultural systems could not be identified. Our study demonstrates that phytoliths ...