Seaweed Competition: Ulva Sp. has the Potential to Produce the Betaine Lipid Diacylglyceryl-O-4’-(N,N,N,-Trimethyl) Homoserine (DGTS) in Order to Replace Phosphatidylcholine (PC) Under Phosphate-Limiting Conditions in the P-Limited Dutch Wadden Sea and Outcompete an Aggressive Non-Indigenous Gracilaria vermiculophylla Red Drift Algae Out of this Unique Unesco World Heritage Coastal Area

The present study tested in the Western Dutch Wadden Sea (WDW) UNESCO World Heritage Site why an on a global scale the aggressive non-indigenous red drift alga Gracilaria vermiculophylla didn’t succeed to overgrow the WDC. In such a multifaceted complex ecosystem like the dynamic WDC it seems like unraveling a Gordian knob in order to describe the inextricable relationship between this seaweed invader suppression and its (a) biotic environment. However, we succeeded at the molecular level to give a convincing reasoning at first grounded in the awareness of a since 1987 river Rhine-North-Sea-WD... Mehr ...

Verfasser: van Ginneken, V.J.T.
Gittenberger, A.
Rensing, M.
de Vries, E.
Peeters, E.T.H.M.
Verheij, E.
Dokumenttyp: article/Letter to editor
Erscheinungsdatum: 2017
Schlagwörter: Life Science
Sprache: Englisch
Permalink: https://search.fid-benelux.de/Record/base-27458301
Datenquelle: BASE; Originalkatalog
Powered By: BASE
Link(s) : https://research.wur.nl/en/publications/seaweed-competition-ulva-sp-has-the-potential-to-produce-the-beta

The present study tested in the Western Dutch Wadden Sea (WDW) UNESCO World Heritage Site why an on a global scale the aggressive non-indigenous red drift alga Gracilaria vermiculophylla didn’t succeed to overgrow the WDC. In such a multifaceted complex ecosystem like the dynamic WDC it seems like unraveling a Gordian knob in order to describe the inextricable relationship between this seaweed invader suppression and its (a) biotic environment. However, we succeeded at the molecular level to give a convincing reasoning at first grounded in the awareness of a since 1987 river Rhine-North-Sea-WDC severely Phosphorus (P) restricted ecosystem. Our ecological datasets gave via final DCA (Detrended Correspondence Analysis) awareness of the very compelling interaction between Ulva sp. and G.vermiculophylla. Based on LCMS-techniques we discovered that Ulva sp. have the advantage to use the biochemical pathway solely rarely observed in some euckaryotes- to have the potential to produce the betaine lipid diacylglyceryl-O-4’-(N,N,N,-trimethyl)homoserine (DGTS) which replaces the plant/seaweed cell wall structure phosphatidylcholine (PC) “lecithine” under phosphate-limiting growth conditions. Also we hope this lipidomics based compound DGTS can serve as an ecological biomarker in order to protect vulnerable ecosystems like the Wadden Sea (UNESCO World Heritage).