rTg-D: A novel transgenic rat model of cerebral amyloid angiopathy Type-2

Background: Cerebral amyloid angiopathy (CAA) is common disorder of the elderly, a prominent comorbidity of Alzheimer's disease, and causes vascular cognitive impairment and dementia. Previously, we generated a transgenic rat model of capillary CAA type-1 that develops many pathological features of human disease. However, a complementary rat model of larger vessel CAA type-2 disease has been lacking. Methods: A novel transgenic rat model (rTg-D) was generated that produces human familial CAA Dutch E22Q mutant amyloid β-protein (Aβ) in brain and develops larger vessel CAA type-2. Quantitative b... Mehr ...

Verfasser: Judianne Davis
Feng Xu
Xiaoyue Zhu
William E. Van Nostrand
Dokumenttyp: Artikel
Erscheinungsdatum: 2022
Reihe/Periodikum: Cerebral Circulation - Cognition and Behavior, Vol 3, Iss , Pp 100133- (2022)
Verlag/Hrsg.: Elsevier
Schlagwörter: Cerebral amyloid angiopathy / Small vessel disease / Amyloid β protein / Dutch mutation / Transgenic rat / Microbleed / Specialties of internal medicine / RC581-951 / Neurosciences. Biological psychiatry. Neuropsychiatry / RC321-571
Sprache: Englisch
Permalink: https://search.fid-benelux.de/Record/base-27405384
Datenquelle: BASE; Originalkatalog
Powered By: BASE
Link(s) : https://doi.org/10.1016/j.cccb.2022.100133

Background: Cerebral amyloid angiopathy (CAA) is common disorder of the elderly, a prominent comorbidity of Alzheimer's disease, and causes vascular cognitive impairment and dementia. Previously, we generated a transgenic rat model of capillary CAA type-1 that develops many pathological features of human disease. However, a complementary rat model of larger vessel CAA type-2 disease has been lacking. Methods: A novel transgenic rat model (rTg-D) was generated that produces human familial CAA Dutch E22Q mutant amyloid β-protein (Aβ) in brain and develops larger vessel CAA type-2. Quantitative biochemical and pathological analyses were performed to characterize the progression of CAA and associated pathologies in aging rTg-D rats. Results: rTg-D rats begin to accumulate Aβ in brain and develop varying levels of larger vessel CAA type-2, in the absence of capillary CAA type-1, starting around 18 months of age. Larger vessel CAA was mainly composed of the Aβ40 peptide and most prominent in surface leptomeningeal/pial vessels and arterioles of the cortex and thalamus. Cerebral microbleeds and small vessel occlusions were present mostly in the thalamic region of affected rTg-D rats. In contrast to capillary CAA type-1 the amyloid deposited within the walls of larger vessels of rTg-D rats did not promote perivascular astrocyte and microglial responses or accumulate the Aβ chaperone apolipoprotein E. Conclusion: Although variable in severity, the rTg-D rats specifically develop larger vessel CAA type-2 that reflects many of the pathological features of human disease and provide a new model to investigate the pathogenesis of this condition.