Using a combination of short- and long-read sequencing to investigate the diversity in plasmid- and chromosomally encoded extended-spectrum beta-lactamases (ESBLs) in clinical Shigella and Salmonella isolates in Belgium

For antimicrobial resistance (AMR) surveillance, it is important not only to detect AMR genes, but also to determine their plasmidic or chromosomal location, as this will impact their spread differently. Whole-genome sequencing (WGS) is increasingly used for AMR surveillance. However, determining the genetic context of AMR genes using only short-read sequencing is complicated. The combination with long-read sequencing offers a potential solution, as it allows hybrid assemblies. Nevertheless, its use in surveillance has so far been limited. This study aimed to demonstrate its added value for AM... Mehr ...

Verfasser: Berbers, Johannes
Vanneste, Kevin
Roosens, Nancy H. C. J.
Marchal, Kathleen
Ceyssens, Pieter-Jan
De Keersmaecker, Sigrid C. J.
Dokumenttyp: journalarticle
Erscheinungsdatum: 2023
Schlagwörter: Biology and Life Sciences / Salmonella / Shigella / antimicrobial resistance / extended spectrum beta-lactamase / plasmids / whole genome sequencing
Sprache: Englisch
Permalink: https://search.fid-benelux.de/Record/base-27379595
Datenquelle: BASE; Originalkatalog
Powered By: BASE
Link(s) : https://biblio.ugent.be/publication/01GSSH29ZDNWN5EGMYY1R54BFD

For antimicrobial resistance (AMR) surveillance, it is important not only to detect AMR genes, but also to determine their plasmidic or chromosomal location, as this will impact their spread differently. Whole-genome sequencing (WGS) is increasingly used for AMR surveillance. However, determining the genetic context of AMR genes using only short-read sequencing is complicated. The combination with long-read sequencing offers a potential solution, as it allows hybrid assemblies. Nevertheless, its use in surveillance has so far been limited. This study aimed to demonstrate its added value for AMR surveillance based on a case study of extended-spectrum beta-lactamases (ESBLs). ESBL genes have been reported to occur also on plasmids. To gain insight into the diversity and genetic context of ESBL genes detected in clinical isolates received by the Belgian National Reference Center between 2013 and 2018, 100 ESBL-producing Shigella and 31 ESBL-producing Salmonella were sequenced with MiSeq and a representative selection of 20 Shigella and six Salmonella isolates additionally with MinION technology, allowing hybrid assembly. The bla CTX-M-15 gene was found to be responsible for a rapid rise in the ESBL Shigella phenotype from 2017. This gene was mostly detected on multi-resistance-carrying IncFII plasmids. Based on clustering, these plasmids were determined to be distinct from the circulating plasmids before 2017. They were spread to different Shigella species and within Shigella sonnei between multiple genotypes. Another similar IncFII plasmid was detected after 2017 containing bla CTX-M-27 for which only clonal expansion occurred. Matches of up to 99 % to plasmids of various bacterial hosts from all over the world were found, but global alignments indicated that direct or recent ESBL-plasmid transfers did not occur. It is most likely that travellers introduced these in Belgium and subsequently spread them domestically. However, a clear link to a specific country could not be made. Moreover, integration of bla CTX-M ...