CO2 abatement and CH4 recovery at vehicle exhausts: Comparison and characterization of Ru powder and pellet catalysts

The catalytic conversion of CO2 to CH4 (Sabatier reaction) has been studied to develop an after-treatment process at vehicles exhausts. Three different formulations of Ru commercial catalysts, two in powder and one in pellets shape, were tested and characterized by means of X-ray powder diffraction, scanning electron microscopy (SEM-EDX), N2 adsorption at −196 °C and temperature-programmed reduction (TPR). Experimental results show a high CO2 conversion (XCO2 = 0.96 @ T = 280 °C) for one powder catalyst formulation whereas the other one has maximum CO2 conversion = 0.69. In both cases a high C... Mehr ...

Verfasser: Murena F.
Esposito S.
Deorsola F. A.
Galletti C.
Prati M. V.
Dokumenttyp: Artikel
Erscheinungsdatum: 2020
Verlag/Hrsg.: Elsevier Ltd
Schlagwörter: CO / 2 / remediation / Methanation / Pellet / Ru catalyst / Sabatier reaction / Vehicles exhaust
Sprache: Englisch
Permalink: https://search.fid-benelux.de/Record/base-27256703
Datenquelle: BASE; Originalkatalog
Powered By: BASE
Link(s) : http://hdl.handle.net/11583/2801706

The catalytic conversion of CO2 to CH4 (Sabatier reaction) has been studied to develop an after-treatment process at vehicles exhausts. Three different formulations of Ru commercial catalysts, two in powder and one in pellets shape, were tested and characterized by means of X-ray powder diffraction, scanning electron microscopy (SEM-EDX), N2 adsorption at −196 °C and temperature-programmed reduction (TPR). Experimental results show a high CO2 conversion (XCO2 = 0.96 @ T = 280 °C) for one powder catalyst formulation whereas the other one has maximum CO2 conversion = 0.69. In both cases a high CH4 selectivity is measured. High CO2 conversion (XCO2 = 0.92 @ T = 300 °C) is obtained also with pellet catalysts but only at lower GHSV values. The different behavior of the catalysts was ascribed to the different physicochemical properties and the key parameters for the application development of the process were identified. In particular, the possibility to use pellets or monolithic reactors, thus minimizing the pressure drops in the reactor, makes possible a commercial application in the treatment of vehicles exhausts.