The caa3 terminal oxidase of Bacillus stearothermophilus. Transient spectroscopy of electron transfer and ligand binding.

The thermophilic bacterium Bacillus stearothermophilus possesses a caa3-type terminal oxidase, which was previously purified (De Vrij, W., Heyne, R. I. R., and Konings, W. N. (1989) Eur. J. Biochem. 178, 763-770). We have carried out extensive kinetic experiments on the purified enzyme by stopped-flow time-resolved optical spectroscopy combined with singular value decomposition analysis. The results indicate a striking similarity of behavior between this enzyme and the electrostatic complex between mammalian cytochrome c and cytochrome c oxidase. CO binding to fully reduced caa3 occurs with a... Mehr ...

Verfasser: Silva Giannini
Giovanni Antonini
Wil N. Konings
Emilio D'Itri
Alessandro Giuffrè
Trees Ubbink-Kok
Maurizio Brunori
Dokumenttyp: Artikel
Erscheinungsdatum: 1996
Schlagwörter: Netherlands / Cell Biology / Molecular Biology / Biochemistry
Sprache: Englisch
Permalink: https://search.fid-benelux.de/Record/base-27200806
Datenquelle: BASE; Originalkatalog
Powered By: BASE
Link(s) : https://www.openaccessrepository.it/record/93425

The thermophilic bacterium Bacillus stearothermophilus possesses a caa3-type terminal oxidase, which was previously purified (De Vrij, W., Heyne, R. I. R., and Konings, W. N. (1989) Eur. J. Biochem. 178, 763-770). We have carried out extensive kinetic experiments on the purified enzyme by stopped-flow time-resolved optical spectroscopy combined with singular value decomposition analysis. The results indicate a striking similarity of behavior between this enzyme and the electrostatic complex between mammalian cytochrome c and cytochrome c oxidase. CO binding to fully reduced caa3 occurs with a second order rate constant (k = 7.8 x 10(4)M-1 s-1) and an activation energy (E* = 6.1 kcal mol-1) similar to those reported for beef heart cytochrome c oxidase. Dithionite reduces cytochrome a with bimolecular kinetics, while cytochrome a3 (and CuB) is reduced via intramolecular electron transfer. When the fully reduced enzyme is mixed with O2, cytochrome a3, and cytochrome c are rapidly oxidized, whereas cytochrome a remains largely reduced in the first few milliseconds. When cyanide-bound caa3 is mixed with ascorbate plus TMPD, cytochrome c and cytochrome a are synchronously reduced; the value of the second order rate constant (k = 3 x 10(5) M-1 s-1 at 30 degrees C) suggests that cytochrome c is the electron entry site. Steady-state experiments indicate that cytochrome a has a redox potential higher than cytochrome c. The data from the reaction with O2 reveal a remarkable similarity in the kinetic, equilibrium, and optical properties of caa3 and the electrostatic complex cytochrome c/cytochrome c oxidase.