Monthly interpolated coral δ¹⁸O records from Bonaire corals

Several proxy-based and modeling studies have investigated long-term changes in Caribbean climate during the Holocene, however, very little is known on its variability on short timescales. Here we reconstruct seasonality and interannual to multidecadal variability of sea surface hydrology of the southern Caribbean Sea by applying paired coral Sr/Ca and d18O measurements on fossil annually banded Diploria strigosa corals from Bonaire. This allows for better understanding of seasonal to multidecadal variability of the Caribbean hydrological cycle during the mid- to late Holocene. The monthly res... Mehr ...

Verfasser: Giry, Cyril
Felis, Thomas
Kölling, Martin
Wei, Wei
Lohmann, Gerrit
Scheffers, Sander R
Dokumenttyp: Dataset
Erscheinungsdatum: 2013
Verlag/Hrsg.: PANGAEA
Schlagwörter: Center for Marine Environmental Sciences / Integrierte Analyse zwischeneiszeitlicher Klimadynamik / INTERDYNAMIK / MARUM
Sprache: Englisch
Permalink: https://search.fid-benelux.de/Record/base-27006807
Datenquelle: BASE; Originalkatalog
Powered By: BASE
Link(s) : https://doi.pangaea.de/10.1594/PANGAEA.811146

Several proxy-based and modeling studies have investigated long-term changes in Caribbean climate during the Holocene, however, very little is known on its variability on short timescales. Here we reconstruct seasonality and interannual to multidecadal variability of sea surface hydrology of the southern Caribbean Sea by applying paired coral Sr/Ca and d18O measurements on fossil annually banded Diploria strigosa corals from Bonaire. This allows for better understanding of seasonal to multidecadal variability of the Caribbean hydrological cycle during the mid- to late Holocene. The monthly resolved coral Delta d18O records are used as a proxy for the oxygen isotopic composition of seawater (d18Osw) of the southern Caribbean Sea. Consistent with modern day conditions, annual d18Osw cycles reconstructed from three modern corals reveal that freshwater budget at the study site is influenced by both net precipitation and advection of tropical freshwater brought by wind-driven surface currents. In contrast, the annual d18Osw cycle reconstructed from a mid-Holocene coral indicates a sharp peak towards more negative values in summer, suggesting intense summer precipitation at 6 ka BP (before present). In line with this, our model simulations indicate that increased seasonality of the hydrological cycle at 6 ka BP results from enhanced precipitation in summertime. On interannual to multidecadal timescales, the systematic positive correlation observed between reconstructed sea surface temperature and salinity suggests that freshwater discharged from the Orinoco and Amazon rivers and transported into the Caribbean by wind-driven surface currents is a critical component influencing sea surface hydrology on these timescales.