Comparison of cecal microbiota composition in hybrid pigs from two separate three-way crosses

Objective The intestinal microbiota plays an important role in host physiology, metabolism, immunity, and behavior. And host genetics could influence the gut microbiota of hybrid animals. The three-way cross model is commonly utilized in commercial pig production; however, the use of this model to analyse the gut microbial composition is rarely reported. Methods Two three-way hybrid pigs were selected, with Saba pigs as the starting maternal pig: Duroc× (Berkshire×Saba) (DBS) pig, Berkshire×(Duroc×Saba) (BDS) pig. One hundred pigs of each model were reared from 35 days (d) to 210 d. The body w... Mehr ...

Verfasser: Yuting Yang
Liyan Shen
Huan Gao
Jinming Ran
Xian Li
Hengxin Jiang
Xueyan Li
Zhenhui Cao
Ying Huang
Sumei Zhao
Chunlian Song
Hongbin Pan
Dokumenttyp: Artikel
Erscheinungsdatum: 2021
Reihe/Periodikum: Animal Bioscience, Vol 34, Iss 7, Pp 1202-1209 (2021)
Verlag/Hrsg.: Asian-Australasian Association of Animal Production Societies
Schlagwörter: saba pig / duroc pig / berkshire pig / three-way cross model / cecal microbiota / 16s rrna sequencing / Zoology / QL1-991
Sprache: Englisch
Permalink: https://search.fid-benelux.de/Record/base-26894638
Datenquelle: BASE; Originalkatalog
Powered By: BASE
Link(s) : https://doi.org/10.5713/ab.20.0681

Objective The intestinal microbiota plays an important role in host physiology, metabolism, immunity, and behavior. And host genetics could influence the gut microbiota of hybrid animals. The three-way cross model is commonly utilized in commercial pig production; however, the use of this model to analyse the gut microbial composition is rarely reported. Methods Two three-way hybrid pigs were selected, with Saba pigs as the starting maternal pig: Duroc× (Berkshire×Saba) (DBS) pig, Berkshire×(Duroc×Saba) (BDS) pig. One hundred pigs of each model were reared from 35 days (d) to 210 d. The body weight or feed consumption of all pigs were recorded and their feed/gain (F/G) ratio was calculated. On day 210, 10 pigs from each three-way cross were selected for slaughter, and cecal chyme samples were collected for 16S rRNA gene sequencing. Results The final body weight (FBW) and average daily gain (ADG) of DBS pigs were significantly higher than those of BDS pigs (p<0.05), while the F/G ratios of DBS pigs were significantly lower than those of BDS pigs (p<0.05). The dominant phyla in DBS and BDS pigs were Bacteroidetes (55.23% vs 59%, respectively) and Firmicutes (36.65% vs 34.86%, respectively) (p>0.05). At the genus level, the abundance of Prevotella, Roseburia, and Anaerovibrio in DBS pigs was significantly lower than in BDS pigs (p<0.01). The abundance of Eubacterium, Clostridium XI, Bacteroides, Methanomassiliicoccus, and Parabacteroides in DBS pigs was significantly higher than in BDS pigs (p<0.05). The FBWs and ADGs were positively correlated with Bacteroides, ClostridiumXI, and Parabacteroides but negatively correlated with the Prevotella, Prevotella/Bacteroides (P/B) ratio, Roseburia, and Anaerovibrio. Conclusion These results indicated that host genetics affect the cecal microbiota composition and the porcine gut microbiota is associated with growth performance, thereby suggesting that gut microbiota composition may be a useful biomarker in porcine genetics and breeding.