Machine learning algorithms accurately identify free-living marine nematode species

Background Identifying species, particularly small metazoans, remains a daunting challenge and the phylum Nematoda is no exception. Typically, nematode species are differentiated based on morphometry and the presence or absence of certain characters. However, recent advances in artificial intelligence, particularly machine learning (ML) algorithms, offer promising solutions for automating species identification, mostly in taxonomically complex groups. By training ML models with extensive datasets of accurately identified specimens, the models can learn to recognize patterns in nematodes’ morph... Mehr ...

Verfasser: Simone Brito de Jesus
Danilo Vieira
Paula Gheller
Beatriz P. Cunha
Fabiane Gallucci
Gustavo Fonseca
Dokumenttyp: Artikel
Erscheinungsdatum: 2023
Reihe/Periodikum: PeerJ, Vol 11, p e16216 (2023)
Verlag/Hrsg.: PeerJ Inc.
Schlagwörter: Nematoda / Identification-key / Acantholaimus / Sabatieria / Random Forest / Support vector machine / Medicine / R / Biology (General) / QH301-705.5
Sprache: Englisch
Permalink: https://search.fid-benelux.de/Record/base-26894521
Datenquelle: BASE; Originalkatalog
Powered By: BASE
Link(s) : https://doi.org/10.7717/peerj.16216

Background Identifying species, particularly small metazoans, remains a daunting challenge and the phylum Nematoda is no exception. Typically, nematode species are differentiated based on morphometry and the presence or absence of certain characters. However, recent advances in artificial intelligence, particularly machine learning (ML) algorithms, offer promising solutions for automating species identification, mostly in taxonomically complex groups. By training ML models with extensive datasets of accurately identified specimens, the models can learn to recognize patterns in nematodes’ morphological and morphometric features. This enables them to make precise identifications of newly encountered individuals. Implementing ML algorithms can improve the speed and accuracy of species identification and allow researchers to efficiently process vast amounts of data. Furthermore, it empowers non-taxonomists to make reliable identifications. The objective of this study is to evaluate the performance of ML algorithms in identifying species of free-living marine nematodes, focusing on two well-known genera: Acantholaimus Allgén, 1933 and Sabatieria Rouville, 1903. Methods A total of 40 species of Acantholaimus and 60 species of Sabatieria were considered. The measurements and identifications were obtained from the original publications of species for both genera, this compilation included information regarding the presence or absence of specific characters, as well as morphometric data. To assess the performance of the species identification four ML algorithms were employed: Random Forest (RF), Stochastic Gradient Boosting (SGBoost), Support Vector Machine (SVM) with both linear and radial kernels, and K-nearest neighbor (KNN) algorithms. Results For both genera, the random forest (RF) algorithm demonstrated the highest accuracy in correctly classifying specimens into their respective species, achieving an accuracy rate of 93% for Acantholaimus and 100% for Sabatieria, only a single individual from Acantholaimus of the ...