Petrological and geochemical constraints on the magmatic evolution at the Ampato-Sabancaya compound volcano (Peru)

co-auteur étranger ; International audience ; In order to gain insights into continental arc magmatic processes, we have conducted a petrological and geochemical study of major and trace elements and Sr, Nd, and Pb isotopes of the Ampato-Sabancaya compound volcano, which belongs to the Andean Central Volcanic Zone (CVZ). Whole-rock compositions for Ampato and Sabancaya range from andesites to dacites (56.7–69.3 wt% SiO2) and both belong to a medium- to high-K calk-alkaline magmatic series. Ampato-Sabancaya samples are characterized by high contents of large-ion lithophile elements (LILE; e.g.,... Mehr ...

Verfasser: Rivera, Marco
Samaniego, Pablo
Nauret, François
Mariño, Jersy
Liorzou, Céline
Dokumenttyp: Artikel
Erscheinungsdatum: 2023
Verlag/Hrsg.: HAL CCSD
Schlagwörter: Ampato / Sabancaya / Central Andes / Arc magmatism / Magmatic evolution / Geochemistry / Assimilation-fractional crystallization / Magma mixing / [SDU.STU.VO]Sciences of the Universe [physics]/Earth Sciences/Volcanology
Sprache: Englisch
Permalink: https://search.fid-benelux.de/Record/base-26864556
Datenquelle: BASE; Originalkatalog
Powered By: BASE
Link(s) : https://uca.hal.science/hal-04222805

co-auteur étranger ; International audience ; In order to gain insights into continental arc magmatic processes, we have conducted a petrological and geochemical study of major and trace elements and Sr, Nd, and Pb isotopes of the Ampato-Sabancaya compound volcano, which belongs to the Andean Central Volcanic Zone (CVZ). Whole-rock compositions for Ampato and Sabancaya range from andesites to dacites (56.7–69.3 wt% SiO2) and both belong to a medium- to high-K calk-alkaline magmatic series. Ampato-Sabancaya samples are characterized by high contents of large-ion lithophile elements (LILE; e.g., K, Rb, Ba, Th), low concentrations of high field strength elements (HFSE; e.g., Nb, Zr) and heavy rare earth elements (HREE; e.g., Yb), with consequently high La/Yb and Sr/Y ratios. An increase in these ratios is usually interpreted as a result of magmatic differentiation in the presence of garnet in the deep crust. A detailed analysis reveals that the rocks of Ampato-Sabancaya display three different compositional groups. (1) The first, composed mainly of andesites (56.7–59.8 wt% SiO2), corresponds to lavas from the early stage of the Ampato Basal edifice, as well as pyroclastic deposits from the Ampato Upper edifice. (2) The second group corresponds to andesitic and dacitic compositions (60.0–67.3 wt% SiO2) from the Ampato Basal edifice (Moldepampa stage), the Ampato Upper edifice, and the Sabancaya edifice. (3) The third group corresponds to dacitic compositions (65.0–69.3 wt% SiO2) associated with the Corinta Plinian fallout and pyroclastic flow deposits from the Ampato Upper edifice. This last group of dacites, erupted during the Ampato Upper edifice stage, have drastically different compositions from the other groups with Sr/Y (<27) and Sm/Yb (<4.7) ratios lower than other lavas and lacking evidence of amphibole and/or garnet fractionation during their genesis. As a whole, Sr, Nd, Pd isotopic ratios suggest that mantle-derived magmas are significantly affected by assimilation processes during their evolution, ...