Paleosols can promote root growth of recent vegetation – a case study from the sandy soil–sediment sequence Rakt, the Netherlands

Soil studies commonly comprise the uppermost meter for tracing, e.g., soil development. However, the maximum rooting depth of various plants significantly exceeds this depth. We hypothesized that deeper parts of the soil, soil parent material and especially paleosols provide beneficial conditions in terms of, e.g., nutrient contents, thus supporting their utilization and exploitation by deep roots. We aimed to decipher the different phases of soil formation in Dutch drift sands and cover sands. The study site is located at Bedafse Bergen (southeastern Netherlands) in a 200-year-old oak stand.... Mehr ...

Verfasser: M. I. Gocke
F. Kessler
J. M. van Mourik
B. Jansen
G. L. B. Wiesenberg
Dokumenttyp: Artikel
Erscheinungsdatum: 2016
Reihe/Periodikum: SOIL, Vol 2, Iss 4, Pp 537-549 (2016)
Verlag/Hrsg.: Copernicus Publications
Schlagwörter: Environmental sciences / GE1-350 / Geology / QE1-996.5
Sprache: Englisch
Permalink: https://search.fid-benelux.de/Record/base-26802543
Datenquelle: BASE; Originalkatalog
Powered By: BASE
Link(s) : https://doi.org/10.5194/soil-2-537-2016

Soil studies commonly comprise the uppermost meter for tracing, e.g., soil development. However, the maximum rooting depth of various plants significantly exceeds this depth. We hypothesized that deeper parts of the soil, soil parent material and especially paleosols provide beneficial conditions in terms of, e.g., nutrient contents, thus supporting their utilization and exploitation by deep roots. We aimed to decipher the different phases of soil formation in Dutch drift sands and cover sands. The study site is located at Bedafse Bergen (southeastern Netherlands) in a 200-year-old oak stand. A recent Podzol developed on drift sand covering a Plaggic Anthrosol that was piled up on a relict Podzol on Late Glacial eolian cover sand. Root-free soil and sediment samples, collected in 10–15 cm depth increments, were subjected to a multi-proxy physical and geochemical approach. The Plaggic Anthrosol revealed low bulk density and high phosphorous and organic carbon contents, whereas the relict Podzol was characterized by high iron and aluminum contents. Frequencies of fine (diameter ≤ 2 mm) and medium roots (2–5 mm) were determined on horizontal levels and the profile wall for a detailed pseudo-three-dimensional insight. On horizontal levels, living roots were most abundant in the uppermost part of the relict Podzol with ca. 4450 and 220 m −2 , significantly exceeding topsoil root abundances. Roots of oak trees thus benefited from the favorable growth conditions in the nutrient-rich Plaggic Anthrosol, whereas increased compactness and high aluminum contents of the relict Podzol caused a strong decrease of roots. The approach demonstrated the benefit of comprehensive root investigation to support interpretation of soil profiles, as fine roots can be significantly underestimated when quantified at the profile wall. The possible rooting of soil parent material and paleosols long after their burial confirmed recent studies on the potential influence of rooting to overprint sediment–(paleo)soil sequences of various ages, ...