Heat Transfer Measurement within Green Roof with Incinerated Municipal SolidWaste Aggregates ; Belgium

peer reviewed ; A green roof is composed of a substrate and drainage layers which are fixed on insulation material and roof structure. The global heat resistance (Rc) within a green roof is affected by the humidity content of the substrate layer in which the coarse recycled materials can be used. Moreover, the utilization of recycled coarse aggregates such as incinerated municipal solid waste aggregate (IMSWA) for the drainage layer would be a promising solution, increasing the recycling of secondary resources and saving natural resources. Therefore, this paper aims to investigate the heat tra... Mehr ...

Verfasser: Kazemi, Mostafa
Courard, Luc
Hubert, Julien
Dokumenttyp: journal article
Erscheinungsdatum: 2021
Verlag/Hrsg.: Multidisciplinary Digital Publishing Institute (MDPI)
Schlagwörter: heat transfer / incinerated municipal solid waste aggregate / water content / green roof / Engineering / computing & technology / Civil engineering / Ingénierie / informatique & technologie / Ingénierie civile
Sprache: Englisch
Permalink: https://search.fid-benelux.de/Record/base-26593029
Datenquelle: BASE; Originalkatalog
Powered By: BASE
Link(s) : https://orbi.uliege.be/handle/2268/261490

peer reviewed ; A green roof is composed of a substrate and drainage layers which are fixed on insulation material and roof structure. The global heat resistance (Rc) within a green roof is affected by the humidity content of the substrate layer in which the coarse recycled materials can be used. Moreover, the utilization of recycled coarse aggregates such as incinerated municipal solid waste aggregate (IMSWA) for the drainage layer would be a promising solution, increasing the recycling of secondary resources and saving natural resources. Therefore, this paper aims to investigate the heat transfer across green roof systems with a drainage layer of IMSWA and a substrate layer in-cluding recycled tiles and bricks in wet and dry states according to ISO-conversion method. Based on the results, water easily flows through the IMSWAs with a size of 7 mm. Meanwhile, the Rc-value of the green roof system with the dry substrate (1.26 m2 K/W) was 1.7 times more than that of the green roof system with the unsaturated substrate (0.735 m2 K/W). This means that the presence of air-spaces in the dry substrate provided more heat resistance, positively contributing to heat transfer decrease, which is also dependent on the drainage effect of IMSWA. In addition, the Rc-value of the dry substrate layer was about twice that of IMSWA as the drainage layer. No sig-nificant difference was observed between the Rc-values of the unsaturated substrate layer and the IMSWA layer.